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Abstract: In epidemiological or demographic studies, with variable age at onset, a typical quantity of interest
is the incidence of a disease (for example the cancer incidence). In these studies, the individuals are usually
highly heterogeneous in terms of dates of birth (the cohort) and with respect to the calendar time (the period)
and appropriate estimation methods are needed. In this article a new estimation method is presented which
extends classical age-period-cohort analysis by allowing interactions between age, period and cohort effects.
We introduce a bidimensional regularized estimate of the hazard rate where a penalty is introduced on the
likelihood of the model. This penalty can be designed either to smooth the hazard rate or to enforce consecutive
values of the hazard to be equal, leading to a parsimonious representation of the hazard rate. In the latter
case, we make use of an iterative penalized likelihood scheme to approximate the L0 norm, which makes the
computation tractable. The method is evaluated on simulated data and applied on breast cancer survival data
from the SEER program.

Keywords: adaptive ridge procedure; age-period-cohort analysis; penalized likelihood; piecewise constant
hazard; survival analysis.

1 Introduction

In epidemiological or demographic studies, with variable age at onset, a typical quantity of interest is the
incidence or the hazard rate of a disease (for example the cancer incidence). In these studies, individuals are
recruited and followed-up during a long period of time, usually from birth. The data are then reported either
in the form of registers, which contain the number of observed cases and the number of individuals at risk
to contract the disease, or in the form of the observed time for each individual. These types of studies are of
great interest for the epidemiologist, especially when the event of interest will tend to occur at late ages, such
as in cancer studies. However, these data are usually highly heterogeneous in terms of dates of birth and with
respect to the calendar time. In such cases, it is therefore very important to take into account the variability
of the age, the cohort (date of birth) and the period (the calendar time) in the hazard rate estimation. This is
usually done using age-period-cohort estimation methods (see Yang and Land [1], and citations therein).

In age-period-cohort analysis, the effects of age, period and cohort are fit as factor variables in a regression
model where the output is the logarithm of the hazard rate. However, this induces an identifiability problem
due to the relationship: period = age + cohort. There have been several solutions proposed to this problem.
Osmond and Gardner [2] proposed to compute each submodel (age-cohort, age-period, and period-cohort)
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and use a weighting procedure to combine the three models. Different constraints have also been proposed
to make the age-period-cohort model identifiable. However, as noticed by Heuer ([3]), the obtained estimates
highly depend on the choice of the constraints. Holford [4] proposed to directly estimate the linear trends
of each effect. This procedure leads to results that are difficult to interpret. See Carstensen [5] for a detailed
discussion of the identifiability problem of the age-period-cohort model. More recently, Kuang et al. [6]
proposed to estimate the second order derivatives of the three effects. This model is implemented in the
package apc Nielsen [7]. Finally, Carstensen [5] proposed to first fit one submodel (say age-cohort) and
then to fit the period effect over the residuals of the first model. This model is implemented in the R package
Epi [8, 9].

All these approaches can be viewed as parametric models, where the parameters are the age, period,
and cohort vector parameters. As such they are also restrictive because they do not allow for interactions
between the three effects, that is they assume that one effect does not depend on the other effect’s value. A
different approach consists in considering the hazard rate as a function of age and either period or cohort
and to estimate this bi-dimensional function in a non-parametric setting. No specific structure of the hazard
rate is assumed. However, for moderate sample sizes, non-parametric approaches such as the maximum
likelihood estimator (MLE) are prone to overparametrization. As a matter of fact the MLE can only be used
if a bi-dimensional grid (e.g. of cohort and age intervals) is provided. Without an appropriate method, this
grid needs to be arbitrarily chosen. If the number of intervals is too large, the MLE will display a large
variance. On the other hand, a too small number of intervals will result in a bias if those intervals are
not optimally chosen. Consequently, regularized methods have been proposed in order to avoid overfitting
in this non-parametric context. A kernel-type estimator was proposed by Beran [10] and McKeague and
Utikal [11] where the cumulative hazard is smoothed using a kernel function. See Keiding [12] for a thorough
discussion of methods for hazard inference in age-period-cohort analysis. More recently, Currie and Kirkby
[13] proposed a spline estimation procedure to infer the hazard rate as a function of two variables. The authors
use a generalized linear model using B-splines and overfitting is dealt with using a penalization over the
differences of adjacent splines’ coefficients.

In this article, we propose a new non-parametric method for bi-dimensional hazard rate estimation.
As the previous non-parametric approaches, this model considers the estimation of the hazard rate with
respect to two variables, i.e. either age-cohort, age-period, or period-cohort, without assuming any specific
structure on the hazard rate. Inference is made in two dimensions, but through the linear relationship period
= age + cohort, the hazard rate can be represented as a function of any two of the three variables. Finally,
in order to take into account the issue of overfitting, we use a sparsity-inducing penalized likelihood method
called adaptive ridge. This iterative method is an approximation of the L0 norm penalty which makes the
computation tractable. We note that the L0 “norm”, defined by ‖u‖0 = #{j|uj ≠ 0} is not a proper norm but
we nevertheless use the term “L0 norm” hereafter following the notations of e.g. Candès et al. [14]. The
method was first introduced by Chartrand and Yin [15] in the context of sparse sensing and applied by Rippe
et al. [16] and Frommlet and Nuel [17] in the context of linear regression. It has been used in the context
of piecewise constant hazard rate estimation by Bouaziz and Nuel [18]. The present work makes use of this
method to perform a segmentation of the hazard rate into constant areas. The novelty of this method lies in
the parsimonious representation of the bi-dimensional hazard rate into segmented areas. In particular, the
method can efficiently exhibit cohort, age, or period effects, that is, specific changes of the hazard rate due
to the date of birth, the age or the calendar time. The penalized likelihood framework used here can also be
used to estimate the L2 norm penalization, which will induce a smoothed estimate of the hazard in a similar
way as the aforementioned non-parametric methods.

Our model is introduced in Section 2. The regularization method is then presented in Section 3. In Section
4, the selection of the penalty parameter is discussed. Finally, the performance of our model is assessed
through a simulation study in Section 5 and illustrations on the SEER cancer dataset is provided in Section 6.
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2 Fused regularized estimation

2.1 Modelization

In the age-period-cohort setting, the date of birth (the cohort) U of each individual is available and the variable
of interest is a time-to-event variable of this individual denoted T. The data are subject to right-censoring and
are represented as tabulated data over the J cohort intervals and the K age intervals [c0, c1), [c1, c2),… , [cJ−1, cJ)
and [d0, d1), [d1, d2),… , [dK−1, dK) respectively, with the convention c0 = d0 = 0 and cJ = dK = ∞. On a
sample of n individuals, the available data can then be rewritten in terms of the exhaustive statistics
O = (O1,1,… ,OJ,K), R = (R1,1,… ,RJ,K), where for j = 1,… , J, k = 1,… ,K, Oj,k represents the number of observed
events that occurred in the jth cohort interval [cj−1, cj) and kth age interval [dk−1, dk) and Rj,k represents the
total time individuals were at risk in this jth cohort and kth age interval. In the case of register data, the
discretization

(
c j
)
, (dk) is imposed by the data and the available data is directly R and O, which are often

called the cases and person-years, respectively. See for instance Carstensen [5] for an example of such data.
The aim is to estimate the hazard rate, defined as:

𝜆(t|u) = lim
dt→0

1
dt

P (t ≤ T < t + dt|T ≥ t,U = u).

In the age-cohort setting 𝜆(t|u) is assumed to be piecewise constant:

𝜆(t|u) =
J∑

j=1

K∑

k=1
𝜆 j,k𝟙[c j−1 ,c j) × [dk−1 ,dk)(t, u),

and inference is made over the J × K dimension parameter 𝜆 = (𝜆1,1,… , 𝜆J,K). Note that the hazard can be
equivalently defined as a function of age and period or as a function of period and cohort where the period
is defined as the calendar time, that is: period = cohort + age. For illustration, the change of coordinates
between the age-period and age-cohort diagrams is represented in Figure 1. In our models, the hazard will be
considered as a function of solely age and cohort since the influence of any of the two elements of age, period
or cohort can be retrieved using this reparametrization.

2.2 Penalized likelihood

Following Aalen et al. ([19]) the negative log-likelihood takes the form

𝓁n(𝝀) =
J∑

j=1

K∑

k=1

{
𝜆 j,kR j,k − O j,k log

(
𝜆 j,k

)}
. (1)

Figure 1: Diagrams represent-
ing the lives of individuals: in
the age-period plane (a) – called
Lexis diagram – and in the age-
cohort plane (b). Solid lines rep-
resent lives of individuals until
occurrence of the event of inter-
est. The same age, cohort, and
period intervals are displayed in
gray.
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The authors also noticed that this log-likelihood is equivalent to a log-likelihood arising from a Poisson
model. However, note that no distribution assumptions are made on the data and in particular the Oj,k are not
assumed to be Poisson distributed (see Carstensen [5]), for a discussion on the “Poisson” model). Minimizing
𝓁n yields an explicit maximum likelihood estimate 𝜆mle

j,k = O j,k∕R j,k. However, for moderate sample sizes this
estimator is overfitted, especially in places of the age-cohort plane where few events are recorded. To remedy
this problem we propose in the following to penalize the differences between adjacent values of the hazard
in the log-likelihood.

For computation convenience, we first reparametrize the model: 𝜂 j,k = log 𝜆j,k, for 1 ≤ j ≤ J and 1 ≤ k ≤ K.
The goal of this work is to estimate the minimizer of the function

𝓁n(𝜼) + 𝜅

2

J−1∑

j=1

K∑

k=1
∥𝜂 j+1,k − 𝜂 j,k∥0 +

𝜅

2

J∑

j=1

K−1∑

k=1
∥𝜂 j,k+1 − 𝜂 j,k∥0, (2)

where 𝓁n(𝜂) was defined in Eq. (1) and 𝜅 is a penalty constant used as a tuning parameter. In the previous
equation, the L0 norm penalty over the differences of adjacent parameter values yields a piecewise constant
estimate of the hazard rate. However this function is not tractable to minimize due to the L0 norm. Hence we
use the adaptive ridge, which, as is explained in Section 3, can be seen as an approximate solution to this
problem.

Let us define the weighted L2 penalized model:

𝓁𝜅

n (𝜼,𝒗,𝒘) = 𝓁n(𝜼) + 𝜅

2

J−1∑

j=1

K∑

k=1
𝑣 j,k

(
𝜂 j+1,k − 𝜂 j,k

)2 + 𝜅

2

J∑

j=1

K−1∑

k=1
𝑤 j,k

(
𝜂 j,k+1 − 𝜂 j,k

)2
, (3)

where 𝒗= (𝑣1,1,… , 𝑣J−1,K) and 𝒘= (𝑤1,1,… , 𝑤J,K−1) are constant positive weights of respective dimensions
( J − 1)K and J(K − 1). Note that the case 𝜅 = 0 corresponds to the maximum likelihood estimation and the
case 𝜅 = ∞ corresponds to a hazard uniformly constant over the age and cohort intervals. The parameter
𝜅 needs to be chosen in an appropriate way in order to obtain a compromise between these two extreme
situations. This is addressed in Section 4.

This model does not attempt to estimate the age, period and cohort effect as parameter vectors. Instead,
it performs a regularized estimation of λ that has no age-period-cohort-type structure.

In the next section, we introduce an algorithm to minimizing Eq. (3), which will be used for estimating
both L2 and L0 penalties. We then introduce the estimation procedures for both fused L2 and L0 penalties.

3 Numerical optimization

In this section, we first introduce the weighted L2 penalized negative log-likelihood and derive how to minimize
it. Then, two different expressions of the weights 𝒗 and 𝒘 are proposed which correspond to two different
types of regularization of the hazard rate. The first one implements the adaptive ridge and yields a piecewise
constant estimate. The second one uses constant weights and yields a smooth estimate.

3.1 Fused L2 penalty estimate

Minimization of 𝓁𝜅
n is performed using the Newton–Raphson method (see Algorithm 1). Let U𝜅

n(𝜼,𝒗,𝒘) =
𝜕𝓁𝜅

n∕𝜕𝜼 be the gradient of the penalized negative log-likelihood and I𝜅n(𝜼,𝒗,𝒘) = 𝜕U𝜅

n(𝜼,𝒗,𝒘)∕𝜕𝜼T be its
Hessian matrix.

For 1 ≤ j, j′ ≤ J and 1 ≤ k, k′ ≤ K, simple algebra yields

𝜕𝓁n(𝜼)
𝜕𝜂 j,k

= exp
(
𝜂 j,k

)
R j,k − O j,k,

𝜕2𝓁n(𝜼)
𝜕𝜂 j′ ,k′𝜕𝜂 j,k

= 𝟙 j = j′ ,k=k′ exp
(
𝜂 j,k

)
R j,k, and
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𝜕𝓁𝜅
n (𝜼)

𝜕𝜂 j,k
= 𝜕𝓁n(𝜼)

𝜕𝜂 j,k
+ 𝜅

[
−𝑣 j,k

(
𝜂 j+1,k − 𝜂 j,k

)
+ 𝑣 j−1,k

(
𝜂 j,k − 𝜂 j−1,k

)]

+ 𝜅
[
−𝑤 j,k

(
𝜂 j,k+1 − 𝜂 j,k

)
+𝑤 j,k−1

(
𝜂 j,k − 𝜂 j,k−1

)]
,

𝜕2𝓁𝜅
n (𝜼)

𝜕𝜂 j′ ,k′𝜕𝜂 j,k
= 𝜕2𝓁n(𝜼)

𝜕𝜂 j′ ,k′𝜕𝜂 j,k
+ 𝜅

[
𝟙 j = j′ ,k=k′

(
𝑣 j′,k′ + 𝑣 j′−1,k′ +𝑤 j′ ,k′ +𝑤 j′ ,k′−1

)

− 𝑣 j′ ,k′𝟙 j= j′+1,k=k′ − 𝑣 j′−1,k′𝟙 j= j′−1,k=k′ −𝑤 j′ ,k′𝟙 j= j′ ,k=k′+1 −𝑤 j′ ,k′−1𝟙 j= j′ ,k=k′−1
]
.

From the last equation, the Hessian matrix can be written

I𝜅n(𝜼,𝒗,𝒘) = 𝜕2𝓁n(𝜼)
𝜕𝜼𝜕𝜼T + 𝜅B(𝜼),

where B(𝜼) is a band matrix of bandwidth equal to min(J,K) − 1. Thus the Hessian matrix is also a band matrix
of bandwidth min(J,K) − 1. Using Cholesky decomposition, the computation of I𝜅n(𝜼,𝒗,𝒘)−1U𝜅

n(𝜼,𝒗,𝒘) has a
(min(J,K)JK) complexity instead of (J3K3).

Algorithm 1: Newton–Raphson procedure with constant weights

1: function NEWTON RAPHSON(O,R, 𝜅, 𝑣, 𝑤)
2: 𝜂← 0
3: while not converge do
4: 𝜼new ← 𝜼 − I𝜅n(𝜼, 𝒗,𝒘)−1U𝜅

n(𝜼, 𝒗,𝒘)
5: 𝜼← 𝜼new

6: end while
7: return 𝜼
8: end function

A ridge-type penalization is performed when setting 𝒗 = 𝒘 = 1 in Eq. (2). In this case the penalization
corresponds to the square of the first-order differences of 𝜼, which yields a smooth estimator of the hazard
rate. This estimate is obtained directly from Algorithm 1.

We make a note that Eq. (3) allows for some flexibility in the regularization. Indeed, one could set different
values to 𝒗 and 𝒘 to manually tune the importance of the regularization between different regions of the
plane and between the two variables.

Finally, note that this method yields an estimate similar to the spline method of Ogata and Katsura [20],
who penalizes over the second-order differences instead of the first-order differences. This means that for
arbitrarily large values of the penalty constant, the regularized hazard will be a constant function instead of
a linear function.

3.2 Fused adaptive ridge estimate

In this section, we derive a computationally tractable procedure to minimize Eq. (2).
We make use of the adaptive ridge, which minimizes a non-convex penalty by iteratively minimizing

approximations of the penalty. The adaptive ridge can be used to approximate any Lq penalty (0 < q < 1) and
it extends to the case q = 0, the latter case corresponding to the logarithmic penalty in lieu of the L0 penalty.
More precisely, the L0 adaptive ridge makes use of the fact that when 𝜀 is close to zero, the function
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𝓁n(𝜼) + 𝜅

2

J−1∑

j=1

K∑

k=1
log

(

1 +
(𝜂 j+1,k − 𝜂 j,k)2

𝜀2

)

+ 𝜅

2

J∑

j=1

K−1∑

k=1
log

(

1 +
(
𝜂 j,k+1 − 𝜂 j,k

)2

𝜀2

)

is a good approximation of (2) (up to a multiplicative constant on the penalty terms). The adaptive ridge consists
in a numerical scheme minimizing the latter function. It does so by iteratively solving L2 penalty problems
(hence its name), and is thus simple to implement. Details are given in Section S1 of the Supplementary
Materials.

As pointed out by a reviewer, another iterative penalized method [21] could have been used which iterately
solves L1 penalty problems to approximate the L0 penalty. As explained by Wipf and Nagarajan [22], these
two methods are very similar in that they both minimize a logarithm penalized problem using two different
approximations. In Section S1 of the Supplementary Materials, we make explicit the link between the two
methods and show that they belong to the same class of optimization schemes. We refer to works related to
either of the two methods in Section S1.3.

We implement the adaptive ridge procedure by minimizing Eq. (3) with the weights adapted iteratively.
We iterate between updating

𝜼new ← arg min
𝜼

𝓁𝜅

n (𝜼,𝒗,𝒘)

using Algorithm 1 and updating the values of the weights:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑣new
j,k =

((

𝜂new
j+1,k − 𝜂new

j,k

)2
+ 𝜀2

𝑣

)−1

,

𝑤new
j,k =

((

𝜂new
j,k − 𝜂new

j,k−1

)2
+ 𝜀2

𝑤

)−1

,

where 𝜀𝑣 and 𝜀𝑤 are constants negligible compared to 1.
We now elaborate on the estimation procedure. The algorithm is said to converge if the absolute difference

of all weighted differences in 𝜂 j,k are below a given threshold (we use 10−8 in our implementation). At
convergence, 𝑣 j,k

(
𝜂 j+1,k − 𝜂 j,k

)2 will be either very close to 0 if |𝜂 j+1,k − 𝜂 j,k| is smaller than 𝜀𝑣 or very close to
1 if |𝜂 j+1,k − 𝜂 j,k| is greater than 𝜀𝑣 — and similarly for 𝑤 j,k

(
𝜂 j,k+1 − 𝜂 j,k

)2. We then set them to 0 or 1 using a
thresholding, so that values smaller than 0.99 are set to 0 and values larger than 0.99 are set to 1 (in practice,
the value of this threshold has little effect, since at convergence the weighted differences are distant to 0 or 1
by ∼ 10−7).

As with other penalized methods and as pointed out in Frommlet and Nuel [17], the adaptive ridge
penalization scheme induces a shrinkage bias. Therefore, after segmentation of the 𝜂j,ks, the hazard rate
is estimated on each constant area using the unpenalized maximum likelihood estimator. These constant
areas are defined as connected components of a graph. We first create the graph whose vertices are the JK
age-cohort rectangles and whose edges are the connections between adjacent cells that have differences
equal to 0. Then, each connected component of this graph is a different area over which the hazard has been
estimated to be constant. The extraction of connected components from the graph is done using the package
igraph [23]. The log-hazard 𝜂(r) of the rth constant area is such that ∀[cj−1, cj) × [dk−1, dk) ∈ r, 𝜂 j,k = 𝜂(r). The
values of 𝜂(r) are then estimated in a second step, using unpenalized maximum likelihood estimation: 𝜂(r)

= log
(

O(r)∕R(r)) where O(r) is the number of events in the rth constant area and R(r) is the time at risk in the rth
constant area.

This algorithmic procedure is summarized in Algorithm 2. In practice, the stopping criterion for the
adaptive ridge algorithm is when the absolute difference between successive values of the weighted differences
is smaller than a predefined value — we use 10−8 in our implementation. Moreover, following Frommlet and
Nuel [17], we have set 𝜀𝑣 = 𝜀𝑤 = 10−5.
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Algorithm 2: Adaptive ridge procedure

1: function ADAPTIVE RIDGE(O,R, 𝜅)
2: 𝜼← 0
3: 𝒗← 1
4: 𝒘← 1
5: while not converge do
6: 𝜼new ←NEWTON RAPHSON(O,R, 𝜅, 𝒗,𝒘)

7: 𝑣new
j,k ←

((

𝜂new
j+1,k − 𝜂new

j,k

)2
+ 𝜀2

𝑣

)−1

8: 𝑤new
j,k ←

((

𝜂new
j,k − 𝜂new

j,k−1

)2
+ 𝜀2

𝑤

)−1

9: 𝜼← 𝜼new

10: end while
11: Compute (Onew, Rnew) selected (𝜼, 𝒗new,𝒘new)
12: 𝜼new ← log

(
Onew∕Rnew)

13: return 𝜼new

14: end function

4 Choice of the penalty parameter κ

In practice, the hazard rate needs to be estimated for a set of penalty constants and the choice of 𝜅 is
determined as the penalty that provides the best compromise between model fit and reduced variability of
the hazard rate estimate. For the L0 regularization model, different values of the penalty constant lead to
different segmentations of the 𝜂 j,k. As a consequence, the problem of choosing the optimal penalty constant
can be rephrased as the problem of choosing the optimal model among a set of models1,… ,M, where
each of these models corresponds to a different segmentation of the 𝜂 j,k and M is the maximum number of
different models. In this section we propose different methods to select the optimal model. Comparison of the
efficiency of the different methods will be analyzed in Section 5 on simulated data.

We recall that R and O are the exhaustive statistics and 𝜼 is the parameter to be estimated in our two
models. Bayesian criteria attempt to maximize the posterior probability P(m|R,O) ∝ P(R,O|m)𝜋(m),
where P(R,O|m) is the integrated likelihood and𝜋 (m) is the prior distribution on the model. This problem
is equivalent to minimizing −2 log P(m|R,O). By integration

P(R,O|m) =
∫𝜼

P(R,O|m, 𝜼)𝜋(𝜼) d𝜼,

where P (R,O|m, 𝜼) is the likelihood and 𝜋(𝜂) is the prior distribution of the parameter, which is taken
constant in the following. Thus Bayesian criteria are defined as

−2 log (P (m|R,O) = 2𝓁n(�̂�m) + qm log n − 2 log 𝜋(m) + P(1),

where qm is the dimension of the modelm i.e., the number of constant areas selected by the adaptive ridge
algorithm.

The BIC [24] corresponds to the Bayesian criterion obtained when one neglects the term 𝜋(m), which is
equivalent to having a uniform prior on the model:

BIC(m) = 2𝓁n(�̂�m) + qm log n.

As explained by Żak-Szatkowska and Bogdan [25], a uniform prior on the model is equivalent to a
binomial prior on the model dimension(JK, 1∕2). When the true model’s dimension is much smaller than the
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maximum possible dimension JK, the BIC tends to give too much importance to models of dimensions around
JK∕2, which will result in underpenalized estimators. To this effect, Chen and Chen [26] have developed an
extended Bayesian information criterion called EBIC0 (or EBIC for short). One can write𝜋(m) = P(m|m ∈
[qm])P(m ∈[qm]) where [qm] is the set of models of dimension qm. The EBIC0 criterion is defined by

setting P(m|m ∈[qm]) = 1∕
(

JK
qm

)

and P(m ∈[qm]) = 1. Thus

𝜋(m) =
(

JK
qm

)

and
EBIC0 (m) = 2𝓁n(�̂�m) + qm log n + 2 log

(
JK
qm

)

.

Note that the EBIC0 assigns the same a priori probability to all models of same dimension. Therefore,
when the true model’s dimension is not close to JK∕2 the EBIC0 will be able to select this model more easily.
Namely, when the true model’s dimension is very small the EBIC0 will tend to choose very sparse models.

The last criterion that will be used is the Akaike information criterion [27], or AIC, defined as
AIC(m) = 2𝓁n(�̂�m) + 2qm. This criterion is known for performing better than the BIC in terms of mean squared
error, however the BIC will tend to select sparser models than the AIC.

Note that Bayesian criteria and the AIC can only be used for the L0 regularized estimation only, since
the L2 model does not perform a model selection. An alternative to performing model selection is to use the
K-fold cross validation. With this method, the data are split at random into L parts. The estimated parameter
obtained when the lth part is left out is noted 𝜂−l(𝜅) and the cross-validated score is defined as

CV(𝜅) =
L∑

l=1
𝓁𝜅,l

n (�̂�−l),

where 𝓁𝜅,l
n is the negative log-likelihood evaluated on the lth part of the data. The optimal penalty constant

is obtained by minimizing CV(𝜅) with respect to 𝜅. The L-fold cross validation method can be used for both
the L0 regularized estimation and the L2 regularized estimation. However, this method is numerically time
consuming as the estimator has to be computed L times while Bayesian criteria or the AIC provide direct
methods to perform model selection from the original estimator. In the simulation studies and data analysis,
we set L = 10.

5 Simulation study

5.1 Simulation designs

In this section, our piecewise estimation method is compared with the AGE-COHORT model and with the L2
penalty estimate. The different criteria for model selection are also compared with each other. We present two
simulation designs. In the first one, the true hazard rate is generated from a smooth age-cohort model which
includes an interaction term on a small region of the age-cohort plane. In the second case, the true hazard
rate is a piecewise constant function with four heterogeneous areas. The two true hazards are displayed in
Figure 2, both in greyscale and in perspective plot.

The simulation design is as follows. We set J = 10 equally spaced age intervals ([0, 10), …, [90, 100])
and K = 10 equally spaced cohort intervals ([1900, 1910), …, [1990, 2000]). In order to simulate a dataset,
the cohorts are first sampled uniformly over the 10 cohort intervals and the age is then simulated using the
corresponding hazard. Censoring is then simulated as a uniform distribution over the age interval [75, 100] for
all cohorts such that all observed events are comprised in the age interval [0, 100]. Since in practice one does
not know the appropriate discretization in advance, a different discretization was used for the estimation
procedure: the age and cohort intervals were defined as 5-year length intervals instead of 10 for the true
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Figure 2: True hazard of the
two simulation designs: smooth
hazard in heatmap (a) and per-
spective plot (b) and piecewise
constant hazard in heatmap (c)
and perspective plot (d).

hazard. As a result, a total of 20 × 20 parameters need to be estimated. We simulated data of sample sizes
100, 400, 1000, 4000, and 10,000. For each sample size, the simulation and estimation were replicated 500
times.

5.1.1 Smooth true hazard

The smooth true hazard (Figure 2(a) and (b)) is generated using the age-cohort model log 𝜆j,k = 𝜇 + 𝛼 j + 𝛽k
with an intercept 𝜇 = log(10−2). The age effect vector 𝜶 and cohort effect vector 𝜷 are arithmetic sequences
such that 𝛼1 = 0, 𝛼J = 2.5, 𝛽1 = 0, and 𝛽K = 0.3. An interaction term is added to the hazard. It corresponds
to a bump in the hazard located in the neighbourhood of the region of the age-cohort plane (45, 1945). The
bump is defined as 10 times the Gaussian density function with mean (1945, 45) and with a diagonal variance-
covariance matrix with diagonal equal to (50, 50). This true hazard displays a sharp increase for high values
of the age, which implies that few events will be recorded in this region. On average, 91% of the events are
observed in this simulation design.

5.1.2 Piecewise constant true hazard

The piecewise constant true hazard (Figure 2(c) and (d)) has four constant areas over the age-cohort square
[0, 100] × [1900, 2000]. On average, 71% of the events are observed in this simulation design.

5.2 Performance of the estimation methods in terms of MSE

Our two estimation methods (L0 penalty and L2 penalty) are compared in terms of the mean squared error
(MSE) in each simulation scenario. The different selection methods for the penalty (AIC, BIC, EBIC and cross-
validation) are included. We compare our methods with the maximum likelihood estimate (MLE), which serves
as baseline for comparison. The results are presented in Table 1, which reports the relative mean square errors
with respect to the MLE for easier comparison.
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Table 1: Relative mean squared errors of the L0 and L2 methods with respect to the maximum likelihood estimate (MLE), for
different sample sizes and different estimation methods.

Sample size L0 method L2 method MLE

AIC BIC EBIC CV CV

(a) Smooth true hazard

100 1.016 0.988 0.011 0.011 0.002 1
400 1.005 0.845 0.144 0.026 0.004 1
1000 0.946 0.628 0.024 0.020 0.006 1
40000 0.851 0.267 0.054 0.037 0.011 1
10000 0.634 0.144 0.113 0.057 0.024 1

(b) Piecewise constant true hazard

100 1.004 1.001 0.003 0.003 0.002 1
400 0.984 0.775 0.036 0.029 0.012 1
1000 0.829 0.408 0.092 0.085 0.024 1
4000 0.715 0.128 0.090 0.110 0.058 1
10000 0.720 0.083 0.065 0.081 0.107 1

For easier comparison, the mean squared errors are given as the ratio with respect to the mean squared error of the MLE. Panel
(a): smooth true hazard. Panel (b): piecewise constant true hazard.

Overall, the EBIC and cross-validated criteria outperform the AIC and the BIC for the two simulations
scenarios. This is particularly true for small sizes where the AIC and the BIC behave very poorly. As expected,
the L2 penalty estimator is the most performant of all estimators in the smooth true hazard scenario (Table
1(a)) and the L0 method performs better in the piecewise constant hazard scenario (Table 1(b)) than in the
smooth true hazard scenario. The L2 norm estimator is also the most performant of all estimators in the
piecewise constant hazard scenario except for very large sample sizes (n = 10,000) where the BIC, EBIC and
cross-validated criterion provide slightly better performances. In both scenarios, the EBIC always outperforms
the AIC, the BIC and the cross-validated criterion.

Finally, note that both the L2 penalty and the L0 penalty (with the EBIC or cross-validation) vastly
outperform the MLE. This validates that our penalized approach is useful to reduce the mean square error of
the estimate. The degree to which the penalized methods outperform the MLE decreases as the sample size
increases, but they still outperform the MLE for a sample size of 10,000.

Different censoring rates were also studied which showed a degradation of the performances of the
overall estimators as the percentage of censored events increases. The performance in terms of number of
selected areas was also investigated. It showed that the EBIC and CV criterion perform better at selecting
sparse models with few areas, while the AIC and BIC tend to overestimate the true number of areas. Indeed,
for sample size 4000, the 80% inter-quantile range of the selected number of areas is [3, 5] for the EBIC and
[1, 5] for the CV, whereas it is [3, 13] and [36, 72] for the BIC and AIC respectively. These experiments are not
reported here.

In conclusion, the simulation experiments suggest to use the EBIC among all different criteria for the
L0 penalty as it provides the best tradeoff between computation time and estimation performance. It has
been shown that using the L0 penalty is beneficial even when the true hazard is not piecewise constant,
as our simulations show that the performance of this estimate exceeds that of the MLE with a smooth true
hazard.

5.3 Perspective plots of the estimation methods

In this section the performance of our two estimates is assessed visually by comparison with the true hazard.
The standard age-cohort model [4] has also been implemented. This model assumes that the hazard has the
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following expression:
log 𝜆 j,k = 𝜇 + 𝛼 j + 𝛽k,

where 𝜇 is the intercept, 𝜶 is the age effect and 𝜷 is the cohort effect. It should be noted that this model does
not allow for interactions between age and cohort effects. Perspective plots of the median hazard estimations
over 500 replications are presented in Figures 3 and 4 for the smooth and piecewise constant true hazard
respectively. For the L0 regularized estimate, the penalty constant is chosen using the EBIC.

In Figure 3, it is seen that the age-cohort model is not able to estimate the central bump in the hazard.
On the contrary, the smoothed estimate accurately recovers the shape of the true hazard except for the high
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Figure 3: Smooth true hazard and corresponding estimates. The sample size is 4000 and the hazard estimates are medians
taken over 500 simulations. The estimations are performed in the age-cohort plane and with different methods. Panel (a)
represents the true hazard used to generate the data, panel (b) represents the hazard estimated using the age-cohort model,
panel (c) represents the smoothed estimate, and panel (d) represents the segmented estimate with the EBIC criterion.
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Figure 4: Piecewise constant true hazard and corresponding estimates. The sample size is 4000 and the hazard estimates are
medians taken over 500 simulations. The estimations are performed in the age-cohort plane and with different methods. Panel
(a) represents the true hazard used to generate the data, panel (b) represents the hazard estimated using the age-cohort model,
panel (c) represents the smoothed estimate, and panel (d) represents the segmented estimate with the EBIC criterion.

values of age where few events are observed. Interestingly, one sees that our segmentation method provides
results similar to the smoothing technique even though the true hazard is not piecewise constant.

The results in Figure 5 yield similar conclusions. The age-cohort model behaves very poorly due to its
constrained structure while the ridge and adaptive estimates provide satisfactory results. In particular the
overall shape of the true hazard is correctly estimated by the L0 penalty.

6 Real data application

Our method is applied to data of survival times after diagnosis of breast cancer. The dataset is provided by the
surveillance, epidemiology, and end results (SEER) program from the US national cancer institute (NCI). SEER
collects medical data of cancers (including stage of cancer at diagnosis and the type of tumor) and follow-up
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Figure 5: Estimated hazard of death after diagnosis of breast cancer for different stages of cancer. The estimate is obtained with
the L0 regularization. The upper right corner of every graph corresponds to the region where no data are available. Note that the
grey-color scales are different between panels.

data of patients in the form of a registry. Around 28 percent of the US population is covered by the program.
The registry started in February 1973 and the available current dataset includes follow-up data until January
2015. We refer to the website https://seer.cancer.gov/ for information about the SEER Program and its
publicly available cancer data.

In this study the duration of interest T is the time from breast cancer diagnosis to death in years,
the variable U is the date of diagnosis (in years) and the period is the calendar time (in years). Patients
continuously entered the study between 1973 and 2015 and right-censoring occurred for patients that were
still alive at the end of follow-up or for those that were lost to follow-up.

The breast cancer data was extracted using the package SEERaBomb. For the sake of comparison, the
subsample of malignant, non-bilateral breast tumor cancers was extracted from the dataset, such that the

https://seer.cancer.gov/
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data comprises 1, 265, 277 women with 60 percent of censored individuals. Times from diagnosis to last day
of follow-up vary between 0 and 41 years, and the dates of cancer diagnosis Ui vary between 1973 and 2015.
Death from another cause than cancer is available in the dataset and is accounted for as right-censoring.

The implementation of our adaptive ridge method aims at two goals. Firstly we aim at simultaneously
detecting a cohort effect and an age effect, that is the evolution of the mortality with respect to the time
elapsed since cancer diagnosis (age effect) and with respect to the date of diagnosis (cohort effect). Secondly,
our method will provide estimation of the hazard rates on the resulting heterogeneous areas. The method is
first applied on the whole sample of 1,265,277 individuals. In order to take into account the fact that mortality
from cancer highly depends on the cancer stage, we also perform a stratified analysis with respect to the stage
of cancer at diagnosis. For this purpose, we use the cancer stage classification provided by the SEER data: we
keep the patients with cancer stages 1, 2, and 3 at the time of diagnosis. This classification closely follows that
of the American joint committee on Cancer (AJCC), 3rd edition; the details are given at page 86 of the manual
entitled comparative staging guide for cancer, available at https://seer.cancer.gov. The main difference
between the two classifications is that the SEER Program classifies the cases where lymph node status cannot
be assessed as if there was no regional lymph node metastasis.

The L0 estimates for the whole sample and for each cancer stage are displayed in Figure 5. We see that
the different stages of cancer at diagnosis have a great impact on the survival times. For stage 1 cancers,
the mortality is low between 0 and 4–5 years after diagnosis, and steadily increases afterwards. The date of
diagnosis seems to have no impact on the mortality of stage 1 cancers. On the other hand, stage 2 cancers
exhibit a strong effect of the date of diagnosis: around 1995–1997, the mortality significantly decreases.
This can correspond to an improvement of the treatment of breast cancer around that period in the United
States. Finally, stage 3 cancers display a very high hazard rate across all dates of diagnosis. This seems to
indicate that the evolution in treatments of breast cancer had a significant impact on the survival times after
diagnosis, but almost exclusively when cancers were diagnosed at stage 2. Two additional analyses of the
hazard rate with stratification with respect to age at diagnosis and estrogen receptor status were performed in
the Supplementary Materials. The results suggest that the shift in mortality around year 1996 could correspond
to the introduction of hormone-blocking therapy.

7 Conclusion

In this article, we have introduced a new estimation method to deal with age-period-cohort analysis. This
model assumes no specific structure of the effects of age and cohort and the hazard rate is directly estimated
without estimating the effects. In order to take into account possible overfitting issues, a penalty is used on
the likelihood to enforce similar consecutive values of the hazard to be equal. Two different types of penalty
terms were introduced. One leads to a ridge type regularization while the other leads to a L0 regularization.
Different selection methods of the penalty parameter were also introduced. To our knowledge, a segmented
estimation model of this kind has never been introduced in this context.

Using simulated data, it has been shown that the cross validated ridge estimator and the EBIC0 adaptive
ridge estimator perform the best in terms of mean squared error. The cross validation criterion was shown
to provide the best fit of the hazard rate, but its high computational cost makes it non-competitive. In this
context, this modified BIC criterion comes out as a powerful tool to select the best bias-variance tradeoff.

The method was successfully applied to data of survival after breast cancer provided by the SEER program.
The segmented estimate of the hazard rate displays important information about the shift in mortality after
being diagnosed of breast cancer in the United States in the mid-1990s.

Our method could be directly extended to a different discretization of the age-period-cohort plane, such
as 1 × 1 × 1-year triangles that are represented in dark gray in Figure 1 (see Section 3 of Carstensen [5], for an
example of this discretization). Another extension would be to consider other types of penalizations. Instead
of estimating a piecewise constant hazard, one could estimate a piecewise linear hazard by penalizing over
second order differences of the hazard.

https://seer.cancer.gov
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