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1 The Expectation step in the EM algorithm

In this section we explicit formula (4) of the main paper. The (E-step) of the EM

algorithm is defined by

Q(θ|θold) = ER1:n|data,θold
[logP(data, R1:n|θ)] ,

and the (M-step) corresponds of maximizing the previous quantity with respect to θ:

θ̂ = arg max
θ

ER1:n|data,θold
[logP(data, R1:n|θ)] .

We then have:

Q(θ|θold) =

∫
R1:n

P(R1:n|data;θold) logP(R1:n,data;θ)dR1:n,

with P(R1:n,data;θ) = P(data|R1:n;θ)× constant, where the constant does not depend

on θ. Notice that P(data|R1:n;θ) =
∏n
i=1 P(datai|Ri;θ) since the distribution of datai
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2 LPMA, CNRS 7599, Université Pierre et Marie Curie, Paris, France

Corresponding author:
Olivier Bouaziz, 45 rue des Saints Pères, 75270 Paris Cedex 06, France

Email: olivier.bouaziz@parisdescartes.fr

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

depends only on Ri. Therefore,

Q(θ|θold) =
n∑
i=1

∫
R1:n

P(R1:n|data;θold) logP(datai|Ri;θ)dR1:n

=

n∑
i=1

∫
Ri

(∫
R−i

1:n

P(R1:n|data;θold)dR−i1:n

)
logP(datai|Ri;θ)dRi,

where R−i1:n represents the sequence R1, . . . Ri−1, Ri+1, . . . , Rn. Then,∫
R−i

1:n
P(R1:n|data;θold)dR−i1:n = P(Ri|data;θold) and

Q(θ|θold) =
n∑
i=1

∫
Ri

P(Ri|data;θold) logP(datai|Ri;θ)dRi

=
n∑
i=1

K∑
k=1

P(Ri = k|data;θold) logP(datai|Ri = k;θ),

which is equation (4) of the main paper.

2 The exponential and Weibull baseline hazards

In this model, we assume that the baseline hazard in the kth segment index belongs

to the Weibull family with shape parameter λk and scale parameter pk. That is,

λk(t) = pk(t/λk)
pk−1/λk, Λk(t) = (t/λk)

pk and Sk(t) = exp(−(t/λk)
pk).

Equation (2) of the main paper can then be written in the following way:

log (ei(k;θ)) = ∆i (log(pk)− pk log(λk) + (pk − 1) log(Ti) +Xiβk) −
( Ti
λk

)pk
exp(Xiβk).

The exponential family is derived as a special case of the Weibull case by setting

pk = 1 for all k = 1, . . . ,K. In that case, Equation (2) of the main paper reduces to:

log (ei(k;θ)) = ∆i (− log(λk) +Xiβk)−
( Ti
λk

)
exp(Xiβk).

Computation of the estimates through Equation (3) of the main paper is done via the

survreg function in the survival R package. The gradient vector and Hessian matrix

can directly be derived from the expression of the log-likelihood and the estimates can

then be computed using the Newton-Raphson algorithm. A weight option is also available

in the survreg function which allows to compute estimates that precisely maximize the

log-likelihood Q(θ|θold) presented in Equation (3) of the main paper.
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The models obtained under these families of baseline hazard functions have the nice

property that they both belong to the class of parametric Cox models and of parametric

Accelerated Failure Time models1. Moreover, the two parameters of the Weibull family

make the baseline hazard quite flexible. As a matter of fact, the Weibull model will

provide a fairly good fit to any true baseline hazard that is monotone with time. However,

these families of model will not properly fit a model with true baseline hazard having a

bathtub shape (i.e a ∪ shape) or an upside down bathtub shape (i.e. a ∩ shape) which

are common types of baseline that can occur in practice.

The model introduced in the next section does not assume any specific shape for the

baseline hazard and consequently will be able to fit any class of baseline hazard functions.

However, this model requires to specify in advance a number of cutpoints and makes the

approximation that the hazard is constant between each cutpoint.

3 The piecewise constant baseline hazard

In this model, the baseline hazard on each segment index is assumed to be piecewise

constant on L cuts represented by c0, c1, . . . , cL, with the convention that c0 = 0 and

cL = +∞. Let Il(t) = I(cl−1 < t ≤ cl). We suppose that

λk(t) =

L∑
l=1

Il(t)α
k
l ,

Λk(t) = αk1tI1(t) +

L∑
l=2

(αk1c1 + · · ·+ αkl−1(cl−1 − cl−2) + αkl (t− cl−1))Il(t),

Sk(t) = exp(αk1t)I1(t) +
L∑
l=2

exp(αk1c1 + · · ·+ αkl−1(cl−1 − cl−2) + αkl (t− cl−1))Il(t).

Equation (2) of the main paper can then be written in the following form:

log (ei(k;θ)) = ∆i (log(λk(Ti)) +Xiβk)−
∫ τ

0
Yi(t)λk(t)dt exp(Xiβk).

For computational purpose, it is interesting to note that the log-likelihood can be written

in a Poisson regression form. Introduce Ri,l =
∫ τ
0 Yi(t)Il(t)dt = I(Ti ≥ cl−1)(cl ∧ Ti −

cl−1), the total time individual i is at risk in the lth interval and Oi,l =
∫ τ
0 Il(t)dNi(t) =

Il(Ti)∆i, the number of events for individual i in the lth subinterval. Then, we have

∆i log(λk) =
∑

lOi,l log(αkl ),
∫ +∞
0 Yi(t)λk(t)dt =

∑
l α

k
l Ri,l and the log-likelihood can be
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written again as:

Q(θ|θold) =
n∑
i=1

K∑
k=1

L∑
l=1

wi(k;θold)
{
Oi,l(log(αkl ) +Xiβk)− αkl Ri,l exp(Xiβk)

}
.

This log-likelihood is proportional to the log-likelihood one would obtain in a

Poisson regression, where the Oi,l are the response variables and are assumed to

follow, conditionally on the Xi, a Poisson distribution with parameter equal to

αkl Ri,l exp(Xiβk). Therefore, the estimates can easily be computed using the glm

function in the R software and specifying log(Ri,l) as “offsets” in the model. See for

instance Aalen et al.2 p.223-225 for more details on the connection between piecewise-

constant hazard model and Poisson regression. A weight option is also available in the

glm function. Finally, note that the exponential case could also be derived as a special

case of the piecewise constant hazard family with L = 1.

As mentioned earlier, the piecewise constant hazard model is very useful when one

does not know the shape of the baseline hazard a priori. However one must specify in

advance the value of L in the model. Usually choosing an adequate number of cutpoints

allows to provide a good balance between bias and variance estimation. However in our

context, detection of the breakpoints is not very sensitive to the choice of L. This is

discussed in more details in Section 5.3 of the main paper.

4 The nonparametric baseline hazard

In the absence of weights, this model has been widely used because of its great

flexibility, the baseline hazard being estimated without making any assumption on its

shape, and because it can easily be implemented in a straightforward manner. First,

the regression parameter is estimated by maximizing the Cox partial likelihood which

contains terms involving only the regression parameter (and not the baseline hazard).

Secondly, the baseline hazard estimator is deduced by the martingale decomposition

of the observed counting process. From Equation (1) of the main paper applied to

the observed counting and at-risk processes, one gets the following decomposition: for

k = 1, . . . ,K, i = 1, . . . , n,

Nik(t)−
∫ t

0
Yik(s) exp(Xiβk)dΛk(s) = Mik(t),

where Nik(t) = Ni(t)I(Ri = k), Yik(t) = Yi(t)I(Ri = k) and Mik(t) is a martingale

with respect to the filtration σ(Nik(s), Yik(s),Xi : 0 ≤ s ≤ t). Taking the expectation
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conditionally on {N1:n(t), Y1:n(t),X1:n : 0 ≤ t ≤ τ ;θold}, summing over the n individuals

and taking the differential of both sides of the equation shows that the expression

n∑
i=1

{dNi(t)wi(k;θold)− Yi(t) exp(Xiβk)wi(k;θold)dΛk(t)} (1)

is centered. A weighted Nelson-Aalen estimator is derived from this relation:

Λ̃k(t,βk) =
n∑
i=1

∫ t

0

wi(k;θold)dNi(s)∑
j Yj(s) exp(Xjβk)wj(k;θold)

·

More details on the standard estimation procedure in the Cox model can be found for

instance in Andersen et al.3. Now, plugging-in this quantity into Q(θ|θold) gives the

following weighted Cox partial likelihood:

QPL(β1, . . . ,βK |θold)

=
n∑
i=1

K∑
k=1

∫ τ

0

Xiβk + log(wi(k;θold))− log

 n∑
j=1

Yj(t) exp(Xjβk)wj(k;θold)

wi(k;θold)dNi(t).

Introduce for k = 1, . . . ,K, l = 0, 1, 2, S
(l)
k (t,β;θold) =∑

j Yj(t)X
⊗l
j exp(Xjβ)wj(k;θold) and Ek(t,β;θold) = S

(1)
k (t,β;θold)/S

(0)
k (t,β;θold).

Then, on each stratum k, define the score function

Uk(β|θold) =

n∑
i=1

∫ τ

0
{Xi − Ek(t,β;θold)}wi(k;θold)dNi(t),

such that β̂k verifies the equality Uk(β̂k|θold) = 0.

Introduce Vk(t,β;θold) = S
(2)
k (t,β;θold)/S

(0)
k (t,β;θold)− Ek(t,β;θold)⊗2 and let

Ik(β|θold) =

n∑
i=1

∫ τ

0
Vk(t,β;θold)wi(k;θold)dNi(t),

represents minus the derivative of the score function with respect to β. Then,

computation of the estimator θ̂ can be performed using the iterative Newton-Raphson

algorithm. The mth iteration step writes as follows:

β̂
(m)

k = β̂
(m−1)
k + Ik(β̂

(m−1)
k |θold)−1Uk(β̂

(m−1)
k |θold).
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At convergence, we get the estimator θ̃ = (Λ̃1, . . . , Λ̃K , β̂1, . . . , β̂K) where Λ̃k(t) =

Λ̃k(t, β̂k) are plug-in Nelson-Aalen estimators of the cumulative hazard functions. Note

that the θ̃ estimator can be computed with the coxph function in the R survival

library. The weights option can be directly specified in this function.

Finally, as for the parametric models, computation of the new weights is done through

the EM algorithm (see Section (3) of the main paper). Then, a simple idea could be to

use plug-in estimators again, i.e. to replace θ by θ̃ in the expression of the ei(k;θ).

However, although this is a relevant strategy for the parametric models it will not

lead to a consistent estimator for the Cox model. Because of the shape of the Nelson-

Aalen estimators, which are stepwise functions, the information in the estimated partial

likelihood (or equivalently in ei(k; θ̃)), at a given time point is limited. To stabilize

the solution, smoothing is needed. In Section 5.2 of the main paper, new kernel type

estimators of the Λks and λks are derived and are used as plug-in estimates in order to

compute the weights.

5 Calibration of the censoring distribution in the simulations

We present here the parameter of the censoring distribution used in Section (6) of the

main paper. In Scenario 1, the censoring was distributed as a uniform distribution with

parameters 0 and 2.4, such that 24%, 65% and 60% of individuals were respectively

censored in segments 1, 2 and 3. In Scenario 2, the censoring was distributed as a uniform

distribution with parameters 0 and 1.8, such that 33%, 47% and 67% of individuals were

respectively censored in segments 1, 2 and 3. In Scenario 3, the censoring was distributed

as a uniform distribution with parameters 0 and 1.5, such that 38%, 54% and 58% of

individuals were respectively censored in segments 1, 2 and 3. In Scenario 4, the censoring

was distributed as a uniform distribution with parameters 0 and 0.9, such that 23%, 58%

and 67% of individuals were respectively censored in segments 1, 2 and 3.

6 Additional comments for smooth change of the hazard rate

In the model from Section 7.2 from the main paper, we consider here the simulation of

two different samples: the first one is simulated under the assumption that RH = 10

and estimated with the one breakpoint model (which gave the smallest BIC value

among other breakpoint models) and the other one is simulated under the assumption

that RH = 50 and estimated with the two breakpoints model (which again had the

smallest BIC value among other models). Figure 1 gives the a posteriori marginal

breakpoint distribution in each case along with their respective estimated weighted

Prepared using sagej.cls



Bouaziz and Nuel 7

survival distributions. It should be noted that each of these plots is for a single sample

and is not representative of the overall behaviour of the estimation method but is given

as a simple illustration as what can be observed in a case of non abrupt changes of the

survival distribution.

In both scenarios it was usually observed that the a posteriori breakpoint distribution

tends to be widely spread such as illustrated by Figure 1. No pattern could be observed

for the localisation of the maximums which seemed to occur at an arbitrarily position

in the segment [a, b]. For the RH = 10 scenario, in the top-left panel of Figure 1, the

maximum a posteriori of the one breakpoint model occurred approximately in 1968. For

the RH = 50 scenario, in the top-right panel of Figure 1, the maximum a posteriori of

the two breakpoints model occurred approximately in 1958 and 1966.

Note that values of the maximum of the probabilities are quite low here compared to

what is obtained for the diabetic patients dataset (see Figure 3 of the main paper) for

instance. This is due to the choice of continuous years of birth in the simulation setting.

Simulating discrete years of birth instead will lead to very similar results on the overall

(especially with results very close to the one obtained in Table 3 of the main paper), but

with a posteriori probability maximums much closer to 1. This is a general behaviour

(which is not restricted to the smooth change of hazard scenarios) due to the fact that in

the continuous case there are as much years of birth as the number of individuals while

there are only a small number of years of birth in the discrete case.

7 Implementation of a smoothing spline estimation method on the

diabetes dataset

In order to model calendar year using regression splines, the hazard rate was

nonparametrically estimated taking left truncation into account for all pair of diabetes

onset/time since diabetes diagnosis in years (there are 40 different years of diabetes onset

and 49 different years for the time since diabetes diagnosis variable). Then the resulting

estimation was smoothed using the R function bigtps of the package bigsplines4. We

present the result in Figure 2 on the log-hazard scale using 100 knots (this is the default

value for bidimensional splines) with a smoothing penalty equal to 1 (this small penalty

was chosen in order to avoid too much irregularity in the hazard estimation).

Next we applied our method using a piecewise constant hazard model on the diabetes

dataset without adjusting with respect to the gender. Four cuts were chosen in the

piecewise-constant-hazard model at times 10, 20, 30 and 40. Using the BIC criterion

two breakpoints were found which occur at the years 1946 and 1962 with a posteriori
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probabilities of having a breakpoint at these locations equal respectively to 59% and

93%. The hazard rate estimation from our model is shown on Figure 3.

When we compare Figures 2 and 3 we see that the breakpoints found by our method

cannot be seen from the regression spline method. Also, if we read Figure 2 on the “time

since diagnosis” axis (that is, from left to right) we see that for a given year of diabetes

onset the hazard rate has a bell shape (low values for small times then the hazard

increases for medium times and finally has low values again for high times). On the

opposite, our method gives an increasing hazard rate for a given cohort year of diabetes

onset which is the tendency we observed when subsets of individuals with a common

interval of years of diabetes onset are chosen and estimation of the hazard is performed

on these subsets. Also the breakpoints can be clearly seen in Figure 3 at years of diabetes

onset 1946 and 1962 and the parsimonious representation of the hazard gives an easy

interpretation of the risk of death since diabetes diagnosis through the years of diabetes

onset. For instance, one could comment that there has been a shift of the hazard rate for

the cohort years of diabetes onset 1933− 1945 to 1946− 1961 which could be a sign of

medical improvement over time: the hazard rate of death for 0− 10 years after diabetes

onset in the cohort 1933− 1945 is similar to the hazard rate of death for 10− 20 years

after diabetes onset in the cohort 1946− 1961 and the hazard rate of death for 10− 20

years after diabetes onset in the cohort 1933− 1945 is similar to the hazard rate of death

for 20− 30 years after diabetes onset in the cohort 1946− 1961.
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Figure 1. Marginal distribution of the breakpoints in the simulation setting of a smooth change of hazard
rate. Left side: model with one breakpoint and RH = 10. Right side: model with two breakpoints and
RH = 50.
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Figure 2. Hazard estimation from the regression spline model for the diabetes data on the log scale.
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Figure 3. Hazard estimation from the two breakpoints model for the diabetes data on the log scale.
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