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1. Discussion of Assumptions 1 and 2

In the main paper, it is said that the processes Y si are almost surely null on the complementary

of As in [0, τ ]. This is easily shown by the inequality

E[Y s(t)] = P[D > t, C > t, Ñ(t−) = s− 1] 6 P[D > t, Ñ(t−) = s− 1],

since the right term is null on the complementary of As in [0, τ ]. This explains why the domains

of integration of the limiting distribution of our estimators can equivalently be on Aτs or [0, τ ]
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(see the results in Theorems 3.1 and 3.2).

We now present two sufficient conditions for Assumptions 1 and 2 to hold.

Condition 1 For all t in [0, τ ], ∀x ∈ Supp(X(t)), P[C > t|X(t) = x] > c > 0 and P[E(B) 6 τ ] > 0.

Condition 2 For all t ∈ [0, τ ], C and (D, dN∗(t), N∗(t−)) are independent conditionally to X(t).

On the one hand, under these conditions, for all i = 1, . . . , n, and all s = 1, 2, . . . , B, one has

E[Y s(t)] = E
[
P[D > t, C > t, Ñ(t−) = s− 1|X(t)]

]
= E

[
P[D > t, Ñ(t−) = s− 1|X(t)]P[C > t|X(t)]

]
> cP[D > t, Ñ(t−) = s− 1],

which implies that for all i = 1, . . . , n, and all s = 1, 2, . . . , B, the process Y s(t) is non null with

positive probability for t ∈ Aτs . On the other hand, Condition 2 trivially implies Assumption 2 of

the main paper.

2. Proofs

Proofs of Theorems 3.1 and 3.2 of the main paper rely on the following lemmas.

A key relation

Lemma 2.1 Under Assumption 2, for all i = 1, . . . , n and all s = 1, . . . , B

E
[
Y si (t)dNi(t) | Xi(t), Ti > t,Ni(t−) = s− 1

]
= Y si (t)ρ0(t, s,Xi(t))dt.

Proof. By its definition, Y si (t)dNi(t) = Y si (t)dN∗i (t) and as a consequence

E[Y si (t)dNi(t) | Xi(t), Ti > t,Ni(t−) = s− 1] = E[Y si (t)dNi(t) | Xi(t), Ti > t,N
∗
i (t−) = s− 1]

= E[Y si (t)dN∗i (t) | Xi(t), Ti > t,N
∗
i (t−) = s− 1] = Y si (t)ρ0(t, s,Xi(t))dt,

where the last equality comes from Assumption 2. �
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Decomposition of the least squares criterion in the additive model

The next proposition gives the details of the construction of the partial least squares in the

additive model. One has to notice that the processes Zn(s) introduced below are centered which

implies that finding a minimizer of LPLSn is a natural way of estimating β0 in the additive model.

Lemma 2.2 In the additive event-specific model (2.2), the partial least squares criterion (2.5)

can be rewritten as

LPLSn (β) =

B∑
s=1

{
β(s)>Hn(s)β(s)− 2β(s)>Hn(s)β0(s)− 2Zn(s)β(s)

}
, (2.1)

where

Zn(s) =
1

n

n∑
i=1

B∑
s=1

∫
[0,τ ]

{Xi(t)− X̄s(t)}Y si (t)dMs
i (t).

Proof. From the definition of the partial least-squares criterion, write

LPLSn (β) =
1

n

n∑
i=1

B∑
s=1

∫
[0,τ ]

{Xi(t)β(s)− X̄s(t)β(s)}2Y si (t) dt (2.2)

− 2

n

n∑
i=1

B∑
s=1

∫
[0,τ ]

{Xi(t)β(s)− X̄s(t)β(s)}Y si (t)dNi(t).

Apply Lemma 2.1 in the equation Y si (t)dMs
i (t) = Y si (t)(dNi(t)−E

[
dNi(t) | Xi(t), Ti > t,Ni(t−) =

s− 1
]
) and conclude the proof using the relation

1

n

n∑
i=1

B∑
s=1

∫
[0,τ ]

{Xi(t)β(s)− X̄s(t)β(s)}{α0(t, s) + X̄s(t)β0(s)}Y si (t) dt = 0.

�

A technical lemma

Lemma 2.3 LetD[0, τ ] denotes the set of càdlàg functions on [0, τ ] and let Fn(·, s) and f(T, δ,X(·), N(·), s)

be two random processes of bounded variation on [0, τ ]. Suppose that for all z in [0, τ ],

E
[(∫ z

0

f(T, δ,X(t), N(t), s)dMs(t)
)2]

<∞.



4

We then have the following properties:

(i) If f(T, δ,X(·), N(·), s) is a random variable of bounded variation on [0, τ ], then

1√
n

n∑
i=1

∫ z

0

f(Ti, δi, Xi(t), Ni(t), s)dM
s
i (t)

converges weakly in D[0, τ ] to a centered gaussian process with variance equal to

E
[(∫ z

0

f(T, δ,X(t), N(t), s)dMs(t)
)2]

.

(ii) If supt∈[0,τ ] |Fn(t, s)− F (t, s)| = oP(1), where F (·, s) is a random process on [0, τ ], then

sup
z∈[0,τ ]

{
1√
n

n∑
i=1

∫ z

0

(Fn(t, s)− F (t, s))f(Ti, δi, Xi(t), Ni(t), s)dM
s
i (t)

}
= oP(1).

Proof. Since a function of bounded variation can be decomposed into the difference between two

nondecreasing functions, the process 1/
√
n
∑
i

∫ z
0
f(Ti, δi, Xi(t), Ni(t), s)dM

s
i (t) can be written

as the difference between two nondecreasing càdlàg empirical processes. Therefore, (i) follows

from example 2.11.16 in van der Vaart and Wellner (1996). To prove (ii), write

sup
z∈[0,τ ]

{
1√
n

n∑
i=1

∫ z

0

(Fn(t, s)− F (t, s))f(Ti, δi, Xi(t), Ni(t), s)dM
s
i (t)

}

6 sup
t∈[0,τ ]

|Fn(t, s)− F (t, s)| sup
z∈[0,τ ]

{
1√
n

n∑
i=1

∫ z

0

f(Ti, δi, Xi(t), Ni(t), s)dM
s
i (t)

}
.

The second term is a OP(1) from (i) of this lemma, while the first term converges to 0 in proba-

bility.

�

Proof of Theorem 3.1

Proof of 1. Let Γaddn (β) be the quantity minimized by β̂tv/add and introduce Γadd(β) =∑B
s=1

[
β(s)>H(s)β(s)− 2h(s)β(s)

]
where

h(s) :=

∫
Aτs

E [Y s(t)X(t)dN(t)]−
∫
Aτs

E[Y s(t)X(t)]

E[Y s(t)]
E[Y s(t)dN(t)].
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Using Lemma 2.1 notice that h(s) = β0(s)>H(s) and consequently, argminβΓadd = β0. Since the

criterion to minimize is convex, the convergence in probability of β̂tv/add to β0 follows from the

pointwise convergence of Γaddn (β) towards Γadd(β). Now write:

∣∣∣Γaddn (β)− Γadd(β)
∣∣∣ 6

∣∣∣LPLSn (β)− Γ(β)
∣∣∣+

λn
n
Bpmax

s,j
|βj(s)− βj(s− 1)|

6 Bp2 max
j,k,s
|βj(s)βk(s)(Hj,k

n (s)−Hj,k(s))|+ 2Bpmax
j,s
|hjn(s)− hj(s)||βj(s)|+ λn

n
Bp

and the result follows from the law of large numbers and the fact that λn/n → 0 as n tends to

infinity.

Proof of 2. Define

Λaddn (u) =

B∑
s=1

u(s)>Hn(s)u(s)− 2
√
n

B∑
s=1

Zn(s)u(s) + λn

p∑
j=1

(
tv(βj0 + uj/

√
n)− tv(βj0)

)

and notice that Λaddn (u) is minimum at u =
√
n(β̂tv/add − β0). For s = 1, . . . , B, write

√
nZn(s)u(s) =

1√
n

n∑
i=1

∫
Aτs

(
Xi(t)−

E[Y s(t)X(t)]

E[Y s(t)]

)
u(s)Y si (t)dMs

i (t)

− 1√
n

n∑
i=1

∫
Aτs

(
X̄s(t)− E[Y s(t)X(t)]

E[Y s(t)]

)
u(s)Y si (t)dMs

i (t).

Let Fn(t, s) = (X̄s(t)−E[Y s(t)X(t)]/E[Y s(t)])u(s)1(t ∈ Aτs ) and F (t, s) = 0. Fn(t, s) has bounded

variation for t in [0, τ ] and from Lemma 2.3 (ii), the second term converges to 0 in probability.

Now, take f(Ti, δi, Xi(t), Ni(t), s) = (Xi(t)−E[Y s(t)X(t)]/E[Y s(t)])u(s)Y si (t)1(t ∈ Aτs ) which is

also a function of bounded variation for t in [0, τ ]. From Lemma 2.3 (i), the first term converges

weakly towards a centered gaussian variable with variance equal to

E

[(∫
Aτs

(X(t)− E[Y s(t)X(t)]/E[Y s(t)])u(s)Y s(t)dMs(t)
)2]

= u(s)>E

[(∫
Aτs

(X(t)− E[Y s(t)X(t)]/E[Y s(t)])Y s(t)dMs(t)
)⊗2]

u(s).

Then, note that
∑B
s=1 u(s)>Hn(s)u(s) converges to

∑B
s=1 u(s)>H(s)u(s), in probability and
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λn
∑
j

(
tv(βj0 + uj/

√
n)− tv(βj0)

)
/λ0 converges to

p∑
j=1

B∑
s=2

{
|∆uj(s)|1(∆βj(s) = 0) + sgn(∆βj0(s))(∆uj(s))1(∆βj(s) 6= 0)

}
.

Thus Λaddn (u) converges to Λadd(u) in distribution. Since Λaddn is convex and Λadd has a unique

minimum, it follows that
√
n(β̂tv/add − β0) converges to argminuΛadd(u) in distribution.

Proof of Theorem 3.2

First define for l = 0, 1 or 2

S(l)
n (s, t, β) =

1

n

n∑
i=1

Y si (t)Xi(t)
⊗l exp(Xi(t)β(s)).

Following the arguments in example VII.2.7 page 502 of Andersen et al. (1993), it can easily be

shown that

sup
t∈Aτs

|S(l)
n (s, t, β0)− s(l)(s, t, β0)| P−→

n→∞
0, ∀ l = 0, 1, 2,

using the fact that the covariate process is of bounded variation (in particular, this assumption

guarantees that s(l)(s, t, β0) has a countable number of jumps).

Proof of 1. Let Γmultn (β) be the quantity minimized by β̂tv/mult and introduce

Γmult(β) = −
B∑
s=1

∫
Aτs

E [X(t)β(s)Y s(t)dN(t)] +

B∑
s=1

∫
Aτs

log(s(0)(s, t, β))E [Y s(t)dN(t)]

= −
B∑
s=1

∫
Aτs

α0(t, s)
(
s(1)(s, t, β0)β(s)− log(s(0)(s, t, β))s(0)(s, t, β0)

)
dt,

where the last equality follows from Lemma 2.1. From similar arguments as in proof 1. of The-

orem 3.1 and the uniform convergence with respect to t of S
(0)
n (s, t, β0) towards s(0)(s, t, β0), we

get the pointwise convergence in probability of Γmultn (β) to Γmult(β). Then, the consistency of

β̂tv/mult follows from the convexity of Γmultn (β) and the fact that argminβ Γmult(β) = β0.

Proof of 2. Consider the convex function

Λmultn (u) = nΓn(β0 + u/
√
n)− nΓn(β0) + λn

p∑
j=1

(
tv(βj0 + uj/

√
n)− tv(βj0)

)
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which is minimum at u =
√
n(β̂tv/mult − β0). Then from a Taylor expansion, one gets

Λmultn (u) = −
√
n

n

B∑
s=1

n∑
i=1

∫
[0,τ ]

(Xi(t)−En(s, t, β0))Y si (t)dNi(t)u(s)

+
1

2n

B∑
s=1

u(s)>
n∑
i=1

∫
[0,τ ]

Vn(s, t, β0)Y si (t)dNi(t)u(s) + λn

p∑
j=1

(
tv(βj0 + uj/

√
n)− tv(βj0)

)
+ oP(1),

where

En(s, t, β) =
S
(1)
n (s, t, β)

S
(0)
n (s, t, β)

, Vn(s, t, β) =
S
(2)
n (s, t, β)

S
(0)
n (s, t, β)

−En(s, t, β)⊗2.

The uniform convergence with respect to t of S
(0)
n (s, t, β) and S

(2)
n (s, t, β) towards s(0)(s, t, β0)

and s(2)(s, t, β0), respectively, and the law of large numbers give the convergence in probability

of the term

1

2n

B∑
s=1

u(s)>
n∑
i=1

∫
[0,τ ]

Vn(s, t, β0)Y si (t)dNi(t)u(s)

towards

1

2

B∑
s=1

u(s)>
∫
[0,τ ]

v(s, t, β0)E[Y s(t)dN(t)]u(s).

Notice that

n∑
i=1

(Xi(t)−En(s, t, β0))Y si (t)α0(t, s) exp(X(t)β0(t))dt = 0

in order to rewrite the first term of Λmultn (u) as

−
√
n

n

B∑
s=1

n∑
i=1

∫
[0,τ ]

(Xi(t)−En(s, t, β0))Y si (t)dMs
i (t)u(s).

From Lemma 2.3, the same kind of arguments as in the proof of Theorem 3.1 can be applied to

conclude the proof.
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3. Characterization of the asymptotic distribution in a particular case

In Theorem 3.1, we state that if λn/
√
n→ λ0 > 0 as n→∞ then

√
n(β̂tv/add− β0) converges in

distribution to

argmin
u∈Rp×B

Λadd(u) = argmin
u∈Rp×B

[ B∑
s=1

{
u(s)>H(s)u(s)− 2u(s)>ξadd(s)

}
+ λ0

p∑
j=1

B∑
s=2

{
|∆uj(s)|1(∆βj(s) = 0) + sgn(∆βj(s))∆uj(s)1(∆βj(s) 6= 0)

} ]
, (3.3)

and for each s, ξadd(s) is defined in Theorem 3.1.

The minimum in Equation (3.3) equals, after permutation, the optimum

argmin
v∈Rp×B

Λadd(v) = argmin
v∈Rp×B

[{
v>HHv − 2v>ξξadd>

}
+ λ0

p∑
j=1

B∑
s=2

{
|∆vj(s)|1(∆βj(s) = 0) + sgn(∆βj(s))∆vj(s)1(∆βj(s) 6= 0)

} ]
, (3.4)

where, in v, the coordinates are arranged by covariates, then by recurrent event number

v = (v1(1), . . . , v1(B), v2(1), . . . , v2(B), . . . , vp(1), . . . , vp(B))>,

and HH and ξξadd are the matrix and vector obtained after the same permutation applied to, re-

spectively, the block diagonal matrix diag
(
H(1), . . . ,H(B)

)
and the vector

(
ξ>add(1), . . . , ξ>add(B)

)>
.

In the case where the matrices H(s) are diagonal for all s = 1, . . . , B, the matrix HH is also

diagonal and the search for the argument minimum can be separated in each covariate:

argmin
v∈Rp×B

Λadd(v) = argmin
v∈Rp×B

[ p∑
j=1

{
vj
>

HHjvj − 2vj
>
ξξjadd

+ λ0

B∑
s=2

{
|∆vj(s)|1(∆βj(s) = 0) + sgn(∆βj(s))∆vj(s)1(∆βj(s) 6= 0)

}}]
,

where HHj is the jth block in HH and ξξj is the jth block of B coordinates in ξξ. Hence it

suffices to make explicit the solution v∗ for one j in {1, . . . , p} of:

argmin
v∈RB

[
v>HHjv − 2v>ξξjadd + λ0

B∑
s=2

{
|∆v(s)|1(∆βj(s) = 0) + sgn(∆βj(s))∆v(s)1(∆βj(s) 6= 0)

}}]
.
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Now write TBγ = v, where TB is the B × B lower triangular matrix defined on page 8 of the

main paper. We then have v∗ = TBγ
∗ and γ∗ is the argument minimum of

γ>T>BHHjTBγ − 2γ>T>B ξξ
j
add + λ0

B∑
s=2

{
|γ(s)|1(∆βj(s) = 0) + sgn(∆βj(s))γ(s)1(∆βj(s) 6= 0)

}
.

By definition of the sub differential, the solution γ∗ verifies

→
0 ∈ 2T>BHHjTBγ

∗ − 2T>B ξξ
j
add + λ0

(
0, ∂|γ∗(2)|1(∆βj(2) = 0), . . . , ∂|γ∗(B)|1(∆βj(B) = 0)

)>
+ λ0

(
0, sgn(∆βj(2)), . . . , sgn(∆βj(B))

)>
where ∂|u| = {sgn(u) + ν(1− |sgn(u)|) : ν ∈ [−1, 1]}. This is equivalent to

→
0 ∈ 2HHjTBγ

∗ − 2ξξjadd + λ0
(
T>B
)−1(

0, ∂|γ∗(2)|1(∆βj(2) = 0), . . . , ∂|γ∗(B)|1(∆βj(B) = 0)
)>

+ λ0
(
T>B
)−1(

0, sgn(∆βj(2)), . . . , sgn(∆βj(B))
)>

.

To illustrate this example, consider the case j = 1 and β1 = (0, 0, b1, b1, 0) as in the simulation

study (see Section 4.2) and set for the sake of simplicity, HHj = I. We have:

→
0 ∈


γ∗(1)− ξξ1add(1)− λ0

2 ∂|γ
∗(2)|

γ∗(1) + γ∗(2)− ξξ1add(2) + λ0

2 (∂|γ∗(2)| − 1)

γ∗(1) + γ∗(2) + γ∗(3)− ξξ1add(3)− λ0

2 (∂|γ∗(4)| − 1))

γ∗(1) + γ∗(2) + γ∗(3) + γ∗(4)− ξξ1add(4) + λ0

2 (∂|γ∗(4)|+ 1))

γ∗(1) + γ∗(2) + γ∗(3) + γ∗(4) + γ∗(5)− ξξ1add(5)− λ0

2

 .

We recall that the soft-thresholding operator ηb, introduced in Donoho and Johnstone (1995) and

defined as ηb(a) = sign(a)(|a| − b)+ for a in R, verifies the equation:

0 ∈ x− a+ b∂|x| ⇔ x = ηb(a).

Therefore, γ∗(2) = ηλ0(ξξ1add(2) − ξξ1add(1) + λ0

2 ) and γ∗(4) = ηλ0(ξξ1add(4) − ξξ1add(3) − λ0). If

γ∗(2) = 0, which happens with probability P[|ξξ1add(2)− ξξ1add(1)− λ0/2| 6 λ0], then

v∗(1) = γ∗(1) = (ξξ1add(1) + ξξ1add(2))/2 + λ0/4 = v∗(2).

Otherwise, with probability P[ξξ1add(2)− ξξ1add(1)− λ0/2 > λ0], v∗(1) = γ∗(1) = ξξ1add(1) + λ0/2,

v∗(2) = ξξ1add(2) + λ0, etc.
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4. Simulation study (continued)

4.1 Simulation of recurrent events

Recurrent events are simulated via an accept-reject method. First, for i = 1, . . . , n, s = 1, . . . , Bmax

and k = 1, 2, . . . , denote by E
(k)
i (s) the kth sequence of variables, simulated in the following way:

E
(k)
i (s) =

(
− log(U) exp(−Xiβ0(s))

)1/aW
for the Weibull case and

E
(k)
i (s) =

1

aG
log
(

1− aG log(U) exp(−Xiβ0(s))
)

for the Gompertz case,

in the event-specific multiplicative rate model and

E
(k)
i (s) = E(Xβ0(s)) ∧W(aW , 1) for the Weibull case and

E
(k)
i (s) = E(Xβ0(s)) ∧ G(aG , 1) for the Gompertz case,

in the event-specific additive rate model. In the latter formulas, U is as an uniform distribution

on (0, 1), E(r) an exponential distribution with rate r, W(φ, 1) a Weibull distribution with shape

parameter φ and G(φ, 1) a Gompertz distribution with shape parameter φ and hazard rate exp(φt)

for t > 0.

For each individual, we simulated Bmax recurrent event times, where Bmax has been empiri-

cally determined, in such a way that the probability that

E
(k)
i (Bmax) 6 Di ∧ Ci

is negligible, here Di is the time of terminal event and Ci the censoring time of individual i.

Then, simulate the recurrent event times Ei(s), s = 1, . . . , Bmax, with the following algorithm:

start with k=1 and do

step 1. for all s = 1, . . . , Bmax, simulate E
(k)
i (s) in the way described above.

step 2. if E
(k)
i (1) < E

(k)
i (2) < . . . < E

(k)
i (Bmax) then Ei(s) = E

(k)
i (s), s = 1, . . . , Bmax. Other-

wise, k = k + 1 and return to step 1.
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We also explain, hereafter, why this simulation scheme gives recurrent events with the correct

rate function studied in the paper. Introduce ρ = inf{k : E(k)(1) < E(k)(2) < . . . < E(k)(Bmax)}

such that E(s) = E(ρ)(s), s = 1, . . . , Bmax. For s = 1, . . . , Bmax, we have, for t < b:

P[E(ρ)(1) < . . . < E(ρ)(s− 1) < t 6 E(ρ)(s) < b,X(t), D > t]

=

∞∑
k=1

P[E(k)(1) < . . . < E(k)(s− 1) < t 6 E(k)(s) < b,X(t), D > t, ρ = k]

= P[E(1)(1) < . . . < E(1)(s− 1) < t 6 E(1)(s) < b,X(t), D > t]

×
∞∑
k=1

(
1− P[E(1)(1) < . . . < E(1)(Bmax)]

)k−1
=

P[E(1)(1) < . . . < E(1)(s− 1) < t 6 E(1)(s) < b,X(t), D > t]

P[E(1)(1) < . . . < E(1)(Bmax)]

Then, applying this equality twice, once with b = t + dt and once with b = ∞, it can easily be

shown that:

P[t 6 E(ρ)(s) < t+ dt|E(ρ)(1) < . . . < E(ρ)(s− 1) < t 6 E(ρ)(s), X(t), D > t]

= P[t 6 E(1)(s) < t+ dt|E(1)(1) < . . . < E(1)(s− 1) < t 6 E(1)(s), X(t), D > t].

Dividing each quantity by dt and taking the limit when dt tends to 0 shows that the E(ρ)(s), s =

1 . . . , Bmax and the E(1)(s), s = 1 . . . , Bmax, have the same rate function which is defined in the

main paper, by (2.1) for the Cox model and by (2.2) for the Aalen model.

Finally note that in the Weibull case, there is also a direct way to simulate the recurrent

events. In the multiplicative case, simulate the first recurrent event, Ei(1) = E
(1)
i (1) as before,

i.e. as a Weibull distribution with shape parameter aW and scale parameter exp(Xiβ0(1)). Then,

for s = 2, . . . , B, simulate the sth recurrent event Ei(s) conditionally on the previous recurrent

event as a left truncated Weibull distribution with shape parameter aW and scale parameter

exp(Xiβ0(s)), truncated at Ei(s − 1). In the additive case, simulate Ei(1) = E
(1)
i (1) as before

and for s = 2, . . . , B, simulate Ei(s) as the law of E(Xβ0(s))∧LT W(aW , 1) where LT W(aW , 1)

represents the left truncated Weibull distribution with shape parameter aW and scale parameter
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1, truncated at Ei(s−1). This simulation scheme is identical to the acceptation-reject simulation

method in the Weibull case.

4.2 Results for the Weibull distribution with aW = 1.5

The results of the simulation study for the additive and multiplicative models with the baseline

function following a Weibull distribution of parameter aW = 1.5 with pobs = 28% are presented

in Tables 1-2.

4.3 Results for the Weibull distribution with aW = 0.5

The results of the simulation study for the additive and multiplicative models with the baseline

function following a Weibull distribution of parameter aW = 0.5 are presented in Tables 3-6.

4.4 Results for the Gompertz distribution with aG = 1.5

The results of the simulation study for the additive and multiplicative models with the baseline

function following a Gompertz distribution of parameter aG = 1.5 are presented in Tables 7-8.

4.5 Results for the Gompertz distribution with aG = 0.5

The results of the simulation study for the additive and multiplicative models with the baseline

function following a Gompertz distribution of parameter aG = 2.5 are presented in Tables 9-10.

5. Dataset

In the bladder tumour data analysis, a small comparison of each estimator in the multiplicative

model is provided using the Akaike and Bayesian information criteria. For a given β, these criteria
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are defined by:

aic(β) = L(β) + 2k, bic(β) = L(β) + log(n)k,

where k = 4 +
∑
j 1(tv(βj) 6= 0) represents the complexity of the model and L(β) is equal to

2nLPLn (β). Note that no such criteria have been found in the existing literature for the additive

model. This is due to the additive structure of the model which makes the likelihood function

difficult to work with.

From the results of Table 11, the smallest AIC is obtained from the two-step estimator which

indicates a better fit from this estimator to the data set. Consequently, this shows that our

estimation procedure can be applied to a given dataset to perform an automatic selection of the

optimal (or near optimal) estimator in terms of AIC or BIC.

In addition, the constant, unconstrained, total variation and reweighted total-variation esti-

mators in the additive model are displayed in Tables 12, 13 and Figure 1. It is of great interest

to notice that the same number of change of variations at the same locations are obtained for the

two-steps estimators in each model.
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Tables

Table 1. Simulation results in the multiplicative model for pobs = 28% with aW = 1.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 81.440 0 1 207.515 1 0 54.730 0.269 0.803 49.269 0.584 0.672
100 30.837 0 1 199.984 1 0 32.572 0.240 0.848 26.525 0.644 0.671
500 10.466 0 1 197.787 1 0 15.744 0.225 0.894 17.381 0.979 0.515
1000 8.671 0 1 196.964 1 0 14.125 0.265 0.856 17.181 0.998 0.500

mse: mean square error, spec: specificity, sens: sensitivity.

Table 2. Simulation results in the additive model for pobs = 28% with aW = 1.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 923.026 0 1 429.533 1 0 267.314 0.312 1 382.825 0.605 1
100 436.022 0 1 411.630 1 0 181.608 0.231 1 242.721 0.576 1
500 195.300 0 1 408.446 1 0 138.549 0.125 1 170.339 0.508 1
1000 165.560 0 1 408.302 1 0 133.361 0.108 1 157.367 0.414 1

mse: mean square error, spec: specificity, sens: sensitivity.

Table 3. Simulation results in the multiplicative model for pobs = 28% with aW = 0.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 228.245 0 1 189.510 1 0 58.861 0.237 0.826 85.976 0.693 0.653
100 121.202 0 1 177.853 1 0 48.403 0.217 0.837 61.130 0.743 0.608
500 68.863 0 1 170.375 1 0 44.150 0.176 0.879 38.864 0.992 0.501
1000 64.008 0 1 169.397 1 0 41.324 0.224 0.808 37.714 1 0.500

mse: mean squared error, fp: false positives, fn: false negatives.

Table 4. Simulation results in the multiplicative model for pobs = 14% with aW = 0.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 1110.171 0 1 191.820 1 0 58.199 0.250 0.813 81.072 0.658 0.633
100 145.322 0 1 180.574 1 0 47.125 0.203 0.830 63.250 0.681 0.636
500 72.530 0 1 173.950 1 0 42.608 0.191 0.889 38.608 0.984 0.505
1000 65.570 0 1 172.620 1 0 39.702 0.197 0.825 36.945 0.998 0.500

mse: mean squared error, fp: false positives, fn: false negatives.

Table 5. Simulation results in the additive model for pobs = 28% with aW = 0.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 2195.405 0 1 463.149 1 0 704.072 0.246 1 980.529 0.539 0.998
100 1057.826 0 1 435.446 1 0 467.772 0.181 1 659.561 0.508 1
500 463.173 0 1 425.972 1 0 365.889 0.065 1 449.020 0.355 1
1000 405.147 0 1 425.604 1 0 355.974 0.028 1 416.129 0.217 1

mse: mean squared error, fp: false positives, fn: false negatives.
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Table 6. Simulation results in the additive model for pobs = 14% with aW = 0.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 2420.518 0 1 464.267 1 0 731.579 0.273 1 1007.030 0.553 0.984
100 1162.455 0 1 406.450 1 0 520.417 0.172 1 703.507 0.525 1
500 472.533 0 1 375.098 1 0 366.240 0.067 1 445.434 0.356 1
1000 403.280 0 1 371.508 1 0 351.461 0.035 1 409.135 0.234 1

mse: mean squared error, fp: false positives, fn: false negatives.

Table 7. Simulation results in the multiplicative model for pobs = 14% with aG = 1.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 2458.389 0 1 413.077 1 0 398.089 0.344 0.656 391.726 0.500 0.500
100 446.965 0 1 399.164 1 0 384.661 0.228 0.732 381.807 0.378 0.560
500 404.385 0 1 403.240 1 0 388.731 0.140 0.863 389.800 0.247 0.778
1000 400.621 0 1 401.898 1 0 388.649 0.095 0.924 388.454 0.222 0.831

mse: mean squared error, fp: false positives, fn: false negatives.

Table 8. Simulation results in the additive model for pobs = 14% with aG = 1.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 1348.887 0 1 404.295 1 0 397.596 0.323 1 525.807 0.610 0.998
100 631.320 0 1 364.233 1 0 275.558 0.215 1 347.038 0.555 1
500 230.762 0 1 344.619 1 0 159.434 0.114 1 196.384 0.463 1
1000 190.031 0 1 342.986 1 0 150.256 0.088 1 177.867 0.399 1

mse: mean squared error, fp: false positives, fn: false negatives.

Table 9. Simulation results in the multiplicative model for pobs = 14% with aG = 0.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 46565.252 0 1 342.382 1 0 305.771 0.240 0.775 293.672 0.414 0.639
100 325.573 0 1 337.498 1 0 290.698 0.165 0.811 283.154 0.316 0.698
500 280.627 0 1 335.447 1 0 281.469 0.087 0.871 279.878 0.262 0.723
1000 278.590 0 1 336.101 1 0 280.443 0.076 0.886 282.248 0.309 0.705

mse: mean squared error, fp: false positives, fn: false negatives.

Table 10. Simulation results in the additive model for pobs = 14% with aG = 0.5

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 1417.616 0 1 409.587 1 0 400.878 0.313 1 527.478 0.597 0.990
100 601.365 0 1 361.610 1 0 250.447 0.236 1 320.110 0.568 1
500 220.894 0 1 334.459 1 0 152.116 0.120 1 187.303 0.463 1
1000 184.552 0 1 332.156 1 0 146.099 0.093 1 173.086 0.397 1

mse: mean squared error, fp: false positives, fn: false negatives.
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Table 11. AIC and BIC values in the multiplicative model

Estimators k L(β) AIC(β) BIC(β)

Constant 4 1109.90 1117.90 1128.91
Unconstrained 20 1097.25 1137.25 1192.32

TV 7 1106.50 1120.50 1139.77
Two-steps TV 6 1104.76 1116.76 1133.28

Table 12. Unconstrained and constant parameters estimates for the bladder data in the additive model

s Unconstrained Constant
pyridoxine thiotepa size number pyridoxine thiotepa size number

1 -0.0141 -0.0206 -0.0011 0.0105 -0.0014 -0.0158 0.0009 0.0096
2 0.3051 0.0029 0.0027 0.0008 -0.0014 -0.0158 0.0009 0.0096
3 -0.0196 0.0005 0.0095 0.0219 -0.0014 -0.0158 0.0009 0.0096
4 0.1227 -0.0102 0.0012 0.0286 -0.0014 -0.0158 0.0009 0.0096
5 0.0929 -0.0231 0.0071 0.0165 -0.0014 -0.0158 0.0009 0.0096

Table 13. Total variation and two-steps total variation parameters estimates for the bladder data in the additive
model

s TV two-steps TV
pyridoxine thiotepa size number pyridoxine thiotepa size number

1 -0.0057 -0.0144 0.0007 0.0070 -0.0069 -0.0149 0.0011 0.0064
2 -0.0005 -0.0144 0.0010 0.0070 -0.0069 -0.0149 0.0011 0.0064
3 -0.0005 -0.0144 0.0038 0.0193 -0.0069 -0.0149 0.0011 0.0218
4 0.0616 -0.0144 0.0038 0.0193 0.1080 -0.0149 0.0011 0.0218
5 0.0616 -0.0144 0.0038 0.0193 0.1080 -0.0149 0.0011 0.0218
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Figure Captions

Fig. 1. Estimates for the bladder data in the additive model. The crosses represent the constant

estimator, the filled circles the unconstrained estimator, the circles the total variation estimator

and the squares the two steps total variation estimator.
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Fig. 1. Estimates for the bladder data in the additive model. The crosses represent the constant estimator,
the filled circles the unconstrained estimator, the circles the total variation estimator and the squares the
two steps total variation estimator.


