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Background in time to event analysis

» We study a positive continuous time to event variable T™.

» T~ represents the time difference between event of interest and patient entry.

Study start Patient entry Ev. of interest
e L 4 4

\’/

T*

» Examples : time to relapse of Leukemia patients, time to onset of cancer, time to
death ...
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Background in time to event analysis : right censoring

Study start End of study
® ®

T,
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Observations, assumptions, notations and quantities of interest
» Observations : for i =1,...,n,
Ti=T"nNG
Ai=11<c
Z € ]Rd

» Independent censoring : T* 1L C | Z

» Quantities of interest :
» The hazard rate :

<T* >
)\(t|z)::A“mOIP[t_T <t+AtAt|T >t 7]
t—

» The survival function :
S(t]Z):=P[T*>1t|Z]

» The Restricted Mean Survival Time (RMST) :
WH(Z) = E[T* AT | Z] = / S(¢| 2)dt,
0

for some 7 > 0.
> ...
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Regression models

» The Cox model (proportional hazard) :
At | Z) = ho(t)exp(Z " ).
For a binary covariate,

At Z=1)

Ne[Z=0) — exp(B).

» The survival function can be obtained by integrating out the hazard function :

S(t| Z) =exp (— /Ot)\(t | Z)dt) .

> The RMST can be obtained by computing [ S(t | Z)dt.

> References :
» Direct modelling of the RMST  Andersen P. K., Hansen M. G. and Klein J. P. Lifetime Data Analysis
(2004) - Lu T., Zhao L. and Wei L. J. Biostatistics (2014) - Xin W. and Schaubel D. E. Lifetime Data Analysis
(2018) - Zhao L. Bioinformatics (2021).
» Random Survival Forests Ishwaran H and Kogalur U. B. R news (2007) - Ishwaran H, Kogalur U. B,
Blackstone E. H. and Lauer M. S. The Annals of Applied Statistics (2008).
» Super learner Golmakani M. K. and Polley E. C. The International Journal of Biostatistics (2020).
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Objectives

1. Prediction of the (restricted) time using Machine Learning (ML) algorithms.
(With a L2 loss this is equivalent to estimating the RMST ]

2. Evaluation of the quality of prediction (MSE)
3. Computation of prediction intervals.

4. Variable importance assessment.
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© Prediction of the (restricted) time based on pseudo-observations
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Backgrounds on pseudo-observations
Let X; = (7—/‘,A[), = 1,...,n.
> 5(t) :=5(Xi,..., X,) is the Kaplan-Meier (KM) estimator of the survival function.

> SEO(t) := 5(X1, ..., Xe—1, Xer1, . .. Xn)(t) is the jackknife (KM) estimator of the
survival function.
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Backgrounds on pseudo-observations
Let X; = (7—/‘,A[), = 1,...,n.
> 5(t) :=5(Xi,..., X,) is the Kaplan-Meier (KM) estimator of the survival function.

> SEO(t) := 5(X1, ..., Xe—1, Xer1, . .. Xn)(t) is the jackknife (KM) estimator of the
survival function.

> The ¢™ pseudo-observation is defined as :

M= n/T 8(t)dt — (n— 1)/T $9(¢)dt.
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Backgrounds on pseudo-observations
Let X; = (7—/‘,A[), = 1,...,n.
> 5(t) :=5(Xi,..., X,) is the Kaplan-Meier (KM) estimator of the survival function.

> SEO(t) := 5(X1, ..., Xe—1, Xer1, . .. Xn)(t) is the jackknife (KM) estimator of the
survival function.

> The ¢™ pseudo-observation is defined as :
r = n/ 8(t)dt — (n— 1)/ $9(¢)dt.
0 0

> The goal is to estimate pu;(Z;) :=E[T* A7 | Z] = [ S(t | Z;)dt (RMST).

» We use ', as the response in a regression model.
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Backgrounds on pseudo-observations
Let X = (T, A;), i=1,...,n.
> 5(t) :=5(Xi,..., X,) is the Kaplan-Meier (KM) estimator of the survival function.

> SO() = §(X, ..., Xe—1, Xet1, - - - X,)(t) is the jackknife (KM) estimator of the
survival function.

> The ¢™ pseudo-observation is defined as :
M= n/ S(t)dt — (n— 1)/ SO (t)dt.
0 0

> The goal is to estimate pu;(Z;) :=E[T* A7 | Z] = [ S(t | Z;)dt (RMST).

We use ', as the response in a regression model.

v

> For example if there exists g known and invertible, a parameter 8 € R9, such that
g(1i(Z)) = Z/ B, then we can estimate 3 from least-square regression :

B =arg minz (f(g) - g_l(Zg—rﬁ))za
=

and firn(Z;) = g_l(ZeTB)-

Andersen P. K., Klein J. P. and Rosthgj S. Generalised linear models for correlated pseudo-observations, with applications to

multi-state models. Biometrika (2003).
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Examples

1. Completely observed data : X; = T, p*(Z;) = E[T; | Z;]. Let 6 = E[T"],

1 1 <
;Z :n—lzxi’
i=1 i#e

Fe=nf—(n—1)9"" Zx ix,-:xe.

i#l
Clearly . E[re | Zg] = u*(Zg).
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Examples

1. Completely observed data : X; = T, p*(Z;) = E[T; | Z;]. Let 6 = E[T"],

1 1 <
;Z :n—lzxi’
i=1 i#e

Fe=nf—(n—1)9"" Zx ix,-:xe.

i#e
Clearly : E[l, | Zo] = ™ (Ze).
2. Right censored data :

M= n/T S(t)dt — (n— 1)/T 59ty d

What can be said about E[l¢ | Z¢]?
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Theoretical result for right-censored data

Proposition (Graw, Gerds, Schumacher 2009 ; Jacobsen, Martinussen 2016)

In the context of right-censored data (i.e. X = (T, A)), assume that
> C 1 (T 2),
> 37> 0,P[T > 7] >0.

Then, for all t € [0,7], with § the Kaplan-Meier estimator,
nS(t) — (n = 1)ST9(t) = S(8) + (X, 1) + Op(n~?),

where 1) is the first order influence function defined as :

d0 ) = s (Lec _ [T i)y,

Moreover,

L% 0)] 20 = -s(2) (1 - 2120

Notations : H(:) =P[T > ], Hi(") =P[T <, A =1].
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e Evaluation of the quality of predictions
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Quality of prediction assessed with the Mean Squared Error (MSE)
» Observations : D, = {O; := (T;, A, Z;),i =1...,n}.
> Train and test sets : Dy = Dy, U Dnieeys Drgain N Diee = 0, Ntrain = [ o0},
Nest = [(1—p)n], 0 < p < 1.

> We implement a learning algorithm fi . on D, .
> We assess the quality of prediction of fir n, ... on Dp.

» We assume there exists fi- such that fi; n,,, —Pp fir, N — 00.
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Quality of prediction assessed with the Mean Squared Error (MSE)
» Observations : D, = {O; := (T;, A, Z;),i =1...,n}.
> Train and test sets : Dy = Dy, U Dnieeys Drgain N Diee = 0, Ntrain = [ o0},
est = [(1 — p)n], 0 < p < 1.
> We implement a learning algorithm fi . on D, .
> We assess the quality of prediction of fir n, ... on Dp.

» We assume there exists fi- such that fi; n,,, —Pp fir, N — 00.

1. In the absence of censoring
We use the Residual Sum of Squares (RSS) :

1 Ntest

S (T AT = frn(2))
1

Ntest i—

RSS(ﬁTvntrain ) =

which converges in probability as n tends to infinity, to
B[(T" A7 = i(2))] = B[(53(2) = 5-(2)°] +E[(T" A7 = 12(2))°] .

imprecision inseparability
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Quality of prediction assessed with the Mean Squared Error (MSE)
» Observations : D, = {O; := (T;, A, Z;),i =1...,n}.
> Train and test sets : Dy = Dy, U Dnieeys Drgain N Diee = 0, Ntrain = [ o0},
est = [(1 — p)n], 0 < p < 1.
> We implement a learning algorithm fi . on D, .
> We assess the quality of prediction of fir n, ... on Dp.

» We assume there exists fi- such that fi; n,,, —Pp fir, N — 00.

1. In the absence of censoring
We use the Residual Sum of Squares (RSS) :

1 Ntest

S (T AT = frn(2))
1

Ntest i—

RSS(ﬁTvntrain ) =

which converges in probability as n tends to infinity, to
B[(T" A7 = i(2))] = B[(53(2) = 5-(2)°] +E[(T" A7 = 12(2))°] .

imprecision inseparability

2. With censored data

We weight the observations using Inverse Probability of Censoring Weighting
(IPCW).
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Rationale behind IPCW

» For any measurable, bounded function h, we have (using the conditional
independence assumption of censoring) :

E

hTi, Z)ir<- A [h(T7 Z)hrr<rr<c
1-G(Ti—|Z) | 1-G6(T7— | Z)
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Rationale behind IPCW

» For any measurable, bounded function h, we have (using the conditional
independence assumption of censoring) :

E h(vaZi)]lTiS‘rAf _ h(-,—i*’Zi)]lTi*ST,TI*SC;
1-G(Ti—Z) ] — 1-G6(T7—| Z)
h(Ti*72")]|'T,»*ST *
“= |G 7y [t 1 77-2])
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Rationale behind IPCW

» For any measurable, bounded function h, we have (using the conditional
independence assumption of censoring) :

E h(Ti7Zi)]lT,-§7Ai:| R -h(Ti*vzi)ILT,-*ST,T,-*SCi:|

1-6(T— | Z) 1-G(T;~2)

(T, Z) 7 <r

“F i (2)

E []1T,.*§c,- | Ti*yzi]

1-G6(Tr—|2)

=E[nT7 2015,

with G(t | Z) :=P[C < t]| Z].
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Rationale behind IPCW

» For any measurable, bounded function h, we have (using the conditional
independence assumption of censoring) :

g [A(T Z,-)]lT,STA,} g [h(T7, Zi)ILTI.*g-r,TI.*SC,»:|

1-G(1-12) | =" 1-6(T -1 2)
h(7-i*721.)]]-7—.*<7'
1_G(TI*_|ZI) [ T,-SC:| i ]
1-G6(T7 -1Z)

=E[nT7 2015,

with G(t | Z) :=P[C < t]| Z].

» In practice, we have to estimate G by G, such that :

1 h(Ti, Z)l1,< A h(T/,Z)]lT<T P *
— —_— E (T, Z)Lrx<r|.
n;]__GH(TI_|Z Z _|Z) 0o [( )T,§j|
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Evaluation of the quality of prediction with censored data

» Observations : D, = {O; := (T;, A, Zi),i =1...,n}.

» Train and test sets : D, = D, .. UD, Dn,,.., N Dneee = 0.
> We implement a learning algorithm fir ... on Dn .. (Nerain = Lpn]),
> We assess the quality of prediction of fir,n,;, on Dny (Mest = [(1 — p)n]).

Ntrain Ntest 1 Ptrain

> We use the following Weighted Residual Sum of Squares (WRSS) :

1 Ntest

2
WRSS(fir ) = = D (T AT~ firnan(Z)) G,
st =1

T <) " L(Ti>7)
1— CA;,,(T,'— |Z) 1- én(T | Z)

(IPCW).
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Evaluation of the quality of prediction with censored data

» Observations : D, = {O; := (T;, A, Zi),i =1...,n}.

» Train and test sets : D, = D, .. UD, Dy,... N Dy, = 0.
> We implement a learning algorithm fir ... on Dn .. (Nerain = Lpn]),
> We assess the quality of prediction of fir,n,;, on Dny (Mest = [(1 — p)n]).

Ntest 1 Mtrain

> We use the following Weighted Residual Sum of Squares (WRSS) :

1 Ntest 2
WRSS(fir ) = = D (T AT~ firnan(Z)) G,
et =1
i < i i
o= HTi=7)A WTi>7)  (pewy.
1-Gu(Ti— | Z) 1-Gu(7|2Z)
Assume :
> CUTZ

> [[|Guls]2) = G(s | 2)|dB(s,2) —— O, [ |firnn(2) = fir(2)|dB(z) —— 0.
Then, WRSS(fir,n,,,) converges in probability, as n — oo, towards :
E[(T* A7 = in(2))°] =E[(43(2) - (D))" +E[(T" AT - 12(2))7] .

imprecision inseparability

o
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[llustration on simulated data

» Scenario A : Linear model. B
T =By Zi+ei,
where o = (5.5,2.5,2.5)7, Z; = (1,2}, 2?7, Z}, 2% ~ B(0.5), & ~ U[-3,3].
» Closed form for the RMST :
1#:(2) = Boo + PuZ' (1 = Z%) + puZ*(1 - Z') + puZ' 2%,
where Bo = (5007 ﬂm,ﬁlo,ﬁu)—r = (5.5, 2.1, 2.1,3‘2)1—, T =8.8.

» scheme A1l : censoring is independent from the covariates, exponential law with
parameter o = 0.07

» scheme A2 : C ~ Cox model, A(t | Z) = Xo(t) exp(B1Z* + B2Z?) with Weibull
baseline hazard W(v, k), v =6,k = 12

44% of censored data in the two settings.
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Scenario Al

Oracle

P.obs.+LM

100 500

1000 100 500
Train and test size

» Censoring is estimated using the Kaplan-Meier estimator.

» In blue : imprecision+inseparability.

» In red : inseparability.
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Scenario A2

KM Cox RSF
359 |
3.0+
2.5 A . . o)
H )
(=]
2.0 % , o
. 1 1]
15" g 77%—%7 77%—%7
B1o04 -
L 55
3.0
Y
2.5+ E s
@
2.0+ =
foodzzozozoooozozos % % % <
LT R e e e e R e
101 : ; .
100 500 1000 l 500 lOOO l 500 1000

Train and test size

Censoring distribution is estimated using the Kaplan-Meier estimator, the Cox model or the
Random Survival Forests (RSF).
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Outline

@ Conformal prediction intervals
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Presentation of split conformal intervals
Dy = Dny UDy,, Doy ={0; i € Th}, Doy ={0i i €Ta}, iNTy = 0.
1. In the absence of censoring :

» Train fir,n; on Dy, .
> Compute the residuals R; = | T AT — fir,n (Z;)|, for i in Dp,.
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Presentation of split conformal intervals
Dy = Dny UDy,, Doy ={0; i € Th}, Doy ={0i i €Ta}, iNTy = 0.

1. In the absence of censoring :
» Train fir,n; on Dy, .
> Compute the residuals R; = | T AT — fir,n (Z;)|, for i in Dp,.
Then compute the following estimators,

Ro(t) := anm, Gny (@) == inf{t : Roy(t) > 1 —a}.

1612
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Presentation of split conformal intervals
Dy = Dny UDy,, Doy ={0; i € Th}, Doy ={0i i €Ta}, iNTy = 0.

1. In the absence of censoring :
» Train fir,n; on Dy, .
> Compute the residuals R; = | T AT — fir,n (Z;)|, for i in Dp,.
Then compute the following estimators,

Ry (t) == anm, Gy (@) := inf{t : Rpy(t) > 1 —a}.

IGIQ

For a new individual O;, define :

CE(Z) = [firm(Z) = Gua(@), fir (Z) + o ()]
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Presentation of split conformal intervals
Dy = Dny UDy,, Doy ={0; i € Th}, Doy ={0i i €Ta}, iNTy = 0.

1. In the absence of censoring :
» Train fir,n; on Dy, .
> Compute the residuals R; = | T AT — fir,n (Z;)|, for i in Dp,.
Then compute the following estimators,

Ro(t) := Zn,m, Gny (@) == inf{t : Roy(t) > 1 —a}.

IEIQ

For a new individual O;, define :
CE(Z) = firm(Z) = 4na @) fir.my (Z)) + G ()]
Using the exchangeability property, we can prove that :
P [Tj* AT e c;g"‘(z,-)} >1-a

Vovk V., Gammerman A. and Shafer G. Algorithmic learning in a random world. Springer (2005).
Lei, J., G'Sell M., Rinaldo A., Tibshirani R. J. and Wasserman L. Distribution-Free Predictive Inference for Regression.
JASA (2018).
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Presentation of split conformal intervals
Dy = Dny UDy,, Doy ={0; i € Th}, Doy ={0i i €Ta}, iNTy = 0.

1. In the absence of censoring :
» Train fir,n; on Dy, .
> Compute the residuals R; = | T AT — fir,n (Z;)|, for i in Dp,.
Then compute the following estimators,

Ry (t) == Zn,m, Gy (@) := inf{t : Rpy(t) > 1 —a}.
IEIQ

For a new individual O;, define :

CE(Z) = [rm(Z)) = Gny(Q), Bir.m (Z)) + Giny (@))]-

Using the exchangeability property, we can prove that :
P [Tj* AT e c;g"‘(z,-)} >1-a

Vovk V., Gammerman A. and Shafer G. Algorithmic learning in a random world. Springer (2005).
Lei, J., G'Sell M., Rinaldo A., Tibshirani R. J. and Wasserman L. Distribution-Free Predictive Inference for Regression.
JASA (2018).

2. With censoring : we use [PCW.
March 26, 2024  21/42



Split conformal intervals with right-censored data

Let G, be a consistent estimator of G. For i € Z, define :
i < i i
Ri=|TinT = firm(Zi), &= WTLisnh | UT>7) (IPCW),
1—Gn(Ti—|Z) 1-Gn(r|Z)

Ziel’z Gilr<e
A )
Ziezz Wi
For a new individual O;, define :

CE(Z) = [frm(Z)) = Gny(@), firm (Z) + Gny()]

R, (t) == Gn,(0) == inf{t : Rp,(t) > 1—a}.
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Split conformal intervals with right-censored data

Let G, be a consistent estimator of G. For i € Z, define :
P < i i
Ri=|TinT = firm(Zi), &= WTLisnh | UT>7) (IPCW),
1—Gn(Ti—|Z) 1-Gn(r|Z)

Ziel’z Gilr<e
A )
Ziezz Wi
For a new individual O;, define :

CE(Z) = [frm(Z)) = Gny(@), firm (Z) + Gny()]

R, (t) == Gn,(0) == inf{t : Rp,(t) > 1—a}.

Theoretical result for the split conformal prediction interval
Assume

> CUT"|Z

> sup,o,cps |Gm(s | 2) — G(s | z)| —— 0.

ny— o0

Then

lim P [Tj* AT e c;g“t(zj)} >1-a.

ny— 00

v

Olivier Bouaziz (MAP5) Prediction with time to event data March 26, 2024 22/42




Split conformal prediction intervals : simulation design

Scenario B : Cox model.

> T ~ Xo(t)exp(By Zi), do ~ W(v, k), v =6,k = 2.
> Zc R Z¥ ~U[-5,5], k=1,2,3, fo=(2,1,0)7.
> C ~ £(0.3), censoring rate : 47%.

> 7 =3.6.
Learning models :

» Linear model applied on pseudo-observations.
» Random Survival Forests.
» Cox model.

» Kaplan-Meier estimator.
lllustrations with IPCW Rank-One-Out (ROO) split conformal intervals.
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Split conformal prediction intervals : illustration on 10 observations

4 ﬁ!ﬁ‘
E 'Iﬁ‘
HA ”——ﬁi—‘—.—<_‘—'
§E- ’—E!E«”
= of T
c ’—QH
B E!s'——w—'—‘
A4 ’—ﬁ‘.t!:

Time to event

» Prediction intervals at the 90% level.

» n=4,000 in IPCW ROO split conformal intervals.

» T AT is represented in red.
> 7 = 3.6 is represented by a dotted vertical line.

Olivier Bouaziz (MAP5) Prediction with time to event data
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¢ RSF
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* KM
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Split conformal prediction intervals : coverage property

KM Cox RSF P.obs.+LM
1 W Lé a%é | % | ; Bjﬁ
900l T L : [
gt T | T ST
I L HL I’ [spE DL L
3 \ HT ‘ : ‘ _ U.ﬁ ‘ .
120.7- . H ’ i o !
i}
067 |
08 09 095 08 09 095 08 09 095 08 09 0095

Confidence level

> IPCW Rank-One-Out (ROO) split conformal intervals.
» Test size : 500.
» Number of replications : 200.

Olivier Bouaziz (MAP5)

Prediction with time to event data

Training size

E5 100
£ s00
£ 1000
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Outline

© Variable importance
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Global variable importance based on Leave One Covariate Out (LOCO)

Let 2$X(Z) be the learner trained on D,, without covariate Z*. Define :
(T, 2) =T A7 = pE0(2) = T AT = i (2))]

and

my = median [6,(T",2) | T* < 7],
pc =P[o(T,Z)>0| T < 7).
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Global variable importance based on Leave One Covariate Out (LOCO)
Let 2$X(Z) be the learner trained on D,, without covariate Z*. Define :
(T 2) =T AT = D)D) = T AT = e (2)
and
my = median [6,(T",2) | T* < 7],
pe = Pl6(T",2) > 0| T* < 1].
Goals :
» Construct asymptotic confidence intervals for py.
» Construct an asymptotic test

(Ho) : me < 0 versus (Hi) : me > 0,

or equivalently
(Ho) : px < 1/2 versus (Hi) : px > 1/2.
A\ (Hp) is composite.
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Global variable importance based on Leave One Covariate Out (LOCO)
Let 2$X(Z) be the learner trained on D,, without covariate Z*. Define :
(T 2) =T AT = DD = [T AT = e (2))

and

3
|

= median [0,(T,2) | T* < 7],
Pk = P[5k(T*,Z) >0 | T < T].

Goals :
» Construct asymptotic confidence intervals for py.

» Construct an asymptotic test
(Ho) : me < 0 versus (Hi) : me > 0,
or equivalently
(Ho) : px < 1/2 versus (Hi) : px > 1/2.
A\ (Hp) is composite.

The derivation of the test is based on Kaplan-Meier integral properties.
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Statistical test for global variable importance
> o =Pl6(T*,2)>0| T* <]
> Let

dp(u,z) = ]ll (—k)

w0 (@)~ lu— iy (2)]20,0<u< s

such that

Pk = 1%5(7_) // &y (u, z)dF (u, z).
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Statistical test for global variable importance
> o =Pl6(T*,2)>0| T* <]
> Let

Ou(u,z) = L,

~ k
0@ = lu—fir oy (2)]20,0<u< T’

Pk = 1%5(7') //d)k(u,z)dF(u,z).

such that

The test statistic is :

Ty = 52(07) e // b (u, z)dF,,z(u z)— ,

Siez, O(THZ)@i

”2

> Oi, i € Iy are the IPCW weights
.~ _ (T <7)A;
L 1= 6n(Ti-)
» 5., : Kaplan-Meier estimator of the survival function of T*,

» 1— G,, : Kaplan-Meier estimator of the survival function of C,
> 52(dy) : estimator of the asymptotic variance.
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Ingredients for deriving the asymptotic distribution of the test statistic

1. Decomposition of Kaplan-Meier integrals as sums of i.i.d. terms.

1_7\/?(7_)// &y (u, 2)d(Fny — F)(u, 2)

__vm 1 Sy Bl v 2VdF(u. 2 A
=150 ”2,-621:2(¢k(7—”2’)1_c(7—"_) / i (u, z)dF (u, )+71(<Dk,T,,A,)>

+ Op(n; /?),
with E [y1(®«; Ti, Aj)] = 0.
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Ingredients for deriving the asymptotic distribution of the test statistic

1. Decomposition of Kaplan-Meier integrals as sums of i.i.d. terms.

1_7\/?(7_)// &y (u, 2)d(Fny — F)(u, 2)

= 1_7\/?(7)% Z <¢k(ﬂa2i)% —/ Sy (u, 2)dF (u, z) + y1(Ps; T,-,A,—))

i€y
+ 0p(ny %),
with E [y1(®«; Ti, Aj)] = 0.

2. Decomposition of the Kaplan-Meier estimator as a martingale process.
A 1 T dM;i(u)
Vo (Sn,(7) = S(7)) = =S(7)— /74-0]?17
(81 - s(m) O 2 Jy T W
where
Ni(t) = LIr,<ea=1,  Yi(t) =175, 1—H(t)=P[T >1t],

Mi(t) = Ni(t) — /t Yi(u)\(u)du,

0
M;(t) is a martingale with respect to the filtration 7} = o(N;(u), Yi(u) : 0 < u < t).
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Asymptotic results for the global variable importance based on LOCO

» Dy, is fixed,
> 5(T*2) = T Ar = pSa(Z) = | T AT = firm (2)],
> Pk :P[(Sk(T*,Z) Z 0 | T S T].

Asymptotic confidence intervals and asymptotic distribution of the test statistic
Assume that
> P[T > 7] >0,
> C 1L (T"2).
Then,
lim P, [7772 > qfﬁ(g’l)] > .

np — o0

We also have
= O’ (¢k) N(0,1)
lim Plpc€ | ———— S (Ti, ZH)wi + q >1—aq,
ny—00 k 1_ 5n2(7_) I;z ( )e \/ 1—a/2

where g; (g Y is the quantile of order 1 — « of the N(0,1) distribution.
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Simulations - Scenario B
» n; =500, Dy, is fixed.

> True values of py obtained from 10° Monte-Carlo simulations :

Learning models p1 P2 p3
Kaplan-Meier 0.50 0.50 0.50
Cox 0.87 0.79 0.49
Random Survival Forests 0.82 0.71 0.44
Pseudo-observations and linear model | 0.84 0.70 0.46
> Confidence intervals at the 90% level on a single sample n, = 500 :

KM Cox RSF P.obs.+LM

% c 7 3 % c 7 % c 7 % c 7

S < 1 s < S < S < 1

o T I ° T o T o T I

Variable Variable Variable Variable
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Distribution of the p-values under (Hp) and (H;)

» n; =500 (fixed), n, = 500, 1,000 Monte-Carlo replications.
» For KM estimator : (Ho) is true for all variables.

» For all other algorithms : (Hp) is true for variable 3, (H,) is true for variables 1 and 2.

KM, variable 1 Cox, variable 1 RSF, variable 1 P.obs.+LM, variable 1
2 o 2 2 2
2 2 - 2 - 2 -
8 o 8 8 a
S e ST T ST T
00 04 08 00 04 08 00 04 08 00 04 08
P-value P-value P-value P-value
KM, variable 2 Cox, variable 2 RSF, variable 2 P.obs.+LM, variable 2
2 o 2 2 2
g < g 2 g 2 g 2
5 a 5 5 5
o
e 3 e o e o T 8 o T
00 04 08 00 04 08 00 04 08 00 04 08
P-value P-value P-value P-value
KM, variable 3 Cox, variable 3 RSF, variable 3 P.obs.+LM, variable 3
2 o z 9 z o 2 o
a g o g o o o o

0.0 0.4 0.8

P-value
Olivier Bouaziz (MAP5)

0.0 0.4 0.8

P-value

0.0 0.4 0.8
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Outline

© Pscudo-observations and the super-learner
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Pseudo-Observations based Super Learner

T|d z
4. Each learner trained in
-3. Learners training step 3 gives predictions
for the validation block
1. Compute T'| predictions
pseudo- 2. Split data

observations  into V/ blocks

5. Regression of the
pseudo-observations
onto the predictions

6. Learners training
(on the entire data set)

3. Learners training

7. Combine the trained learners (steps
1 and 6) with the weights (steps 1-5)

Prediction with time to event data



Split pseudo-observations

» The proof for the validity of the super learner relies on a Bernstein's inequality for
independent variables.
/\ but the pseudo-observations are not independent !
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Split pseudo-observations

» The proof for the validity of the super learner relies on a Bernstein's inequality for
independent variables.
/\ but the pseudo-observations are not independent !

> We introduce the split pseudo-observations. Dy = Dp, U Dp,. Dp, = {O; : i € T4},
D,, ={0;:i €L}, TiNI, =0. Then for i € I», define :

Fi(Dn,) = (n1+l)/ §Dn1,o,(t)dt—n1/ 80, (£)dt,
0 0

where
> §Dn1 is the Kaplan-Meier estimator computed on Dy,

> §Dn1,0; is the Kaplan-Meier estimator computed on D, and O;(€ Dp,).

We have : T'j(Dy,) L Tj(Dp,) | Dy, for i # j.
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Split pseudo-observations

» The proof for the validity of the super learner relies on a Bernstein's inequality for
independent variables.
/\ but the pseudo-observations are not independent !

» We introduce the split pseudo-observations. D, = Dp, U Dy,. Dn, = {O; : i € T1},
Dn, ={0;:i € I}, ZiNZ, = (). Then for i € I, define :

Fi(Dn,) = (n1+1)/ §Dn1,o,(t)dt—n1/ 80, (£)dt,
0 0

where
> §Dn1 is the Kaplan-Meier estimator computed on Dy,

> §Dn1,0; is the Kaplan-Meier estimator computed on D, and O;(€ Dp,).

We have : T'j(Dp,) 1L Tj(Dn,) | D, for i # j.

We prove a similar result as in Jacobsen M., Martinussen T. (2016) :

E[l{(Dn,) | Zi, Dny] = E[T{ AT | Zi] + op(1).
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Split pseudo-observations based Super Learner

2. Compute split pseudo-
observations for the
validation block based

1. Split data on the KM block
into V blocks
. 4. Each learner trained in
-3. Learners training- N -
step 3 gives predictions
for the validation block
T|d z

=

predictions

3. Learners training

5. Regression of the
pseudo-observations
onto the predictions

6. Learners training
(on the entire data set)

Weights

1
7

7. Combine the trained learners (step 6)
with the weights (steps 1-5)
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Standard VS split pseudo-observations based Super Learners : Scenario B

True restricted event times Pseudo-observations Split Pseudo-Observations

0.30
model
0.25 -'_—x—: LM
l+: Lasso
% ‘-—-).Z' GAM
1.
s 0.20 o
1%, RF
brn
=&, NN
0.15 brs
:_—x—. SL
0.10

100 200 300 400 500100 200 300 400 500100 200 300 400 500
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Simulation design

Scenario C : Cox model with interactions.

> At | Z) = Mo(t)exp(g(2)), do ~ W(v, k), v =6,k =2 and
g(Z)=2*—32° +22'Z° + 47° 7" +32°2° — 52°7"°
+32°2° 4 2120 —22°7° —4Z2°7 - 77 Z°,

> we simulate the covariates Z = (Z%,...,2")7 with ZZ ~ B(0.4) for
Jj€42,4,6,9,11,12} and Z/ ~ UJ0,1], for j € {1,3,5,7,8,10,13,14,15}. Only the
first 10 covariates are associated with the event times.

» censoring rate : 47%.

> 7 =28.
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Standard VS Split pseudo-observations based Super Learners : Scenario C

True restricted event times Pseudo-observations Split Pseudo-Observations

0.30

100 200 300 400 500100 200 300 400 500100 200 300 400 500
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Simulations : scenarios B (left) and C (right)

0.25
model model
fC ] Inc !
I_:)S Cox % I:)il Cox
¢! RSF = ¢! RSF
L=! L=!
<! p.obs.+SL <! p.obs.+SL
L= L1
0.20
500 1000 1500 2000 500 1000 1500 2000
n n
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Discussion and future works
Assessment of the quality of prediction :

» The method is robust against model misspecification.

» All the tools are based on IPCW. Censoring distribution must be accurately
modelled. Often it only depends on few or no covariates.

» Censoring assumption : for the test statistic, we impose C 1l Z'!
» Conformal intervals and test are split dependent — multi-splitting.
» Variable importance measure is dependent of the chosen model!
Cwiling A.,Perduca V. and Bouaziz O. A Comprehensive Framework for Evaluating Time to

Event Predictions using the Restricted Mean Survival Time.
https://hal.science/hal-04143419v1/document
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Discussion and future works
Assessment of the quality of prediction :

» The method is robust against model misspecification.

» All the tools are based on IPCW. Censoring distribution must be accurately
modelled. Often it only depends on few or no covariates.

» Censoring assumption : for the test statistic, we impose C 1l Z'!
» Conformal intervals and test are split dependent — multi-splitting.
» Variable importance measure is dependent of the chosen model!
Cwiling A.,Perduca V. and Bouaziz O. A Comprehensive Framework for Evaluating Time to

Event Predictions using the Restricted Mean Survival Time.
https://hal.science/hal-04143419v1/document

Pseudo-observations + super-learner :

» Split pseudo-observations are used to obtain the theoretical results for the
super-learner.

» Split pseudo-observations and classical pseudo-observations are almost identical.
» The super learner automatically selects the best learner
> among all the candidates (discrete super learner),
» or provides the best combination of the candidates (continuous super learner).
» Extensions to other types of incomplete data : recurrent events, competing risks,
left-truncation .. ..
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Theoretical results for the super learner

> Cross-validation : Observations are divided according to an independent random vector

By=(Bu(i):i=1,...,n) €{0,1,2}":

;1 i, Ba(i) = 0}, size ny, empirical law P3, : training set
{0 : i, Ba(i) = 1}, size n1, empirical law Pg, : KM set

i 10, Ba(i) = 2}, size np, empirical law P3, : validation set
< Empirical law of the data : Pg, = {P%,, P&, P3,}
> To(PE,) = split pseudo-observation
> Estimators of the RMST : {¢x : k =1,..., Ky}
< Trained estimators : {tx(P%,) i k=1,...,Kq}
> Quadratic loss : L(v, 0*) = (T* AT — (Z))?, where O* = (T*,Z) ~ P
< The RMST ¢*(Z) = E[T* A 7 | Z] minimizes the risk Eg, | L(3, 0)dP(0)
> Cross-validated risk : §(k) = Eg, [ L(tx(PE,), 0)dP(0)
< Cross-validated oracle selector : k = arg MiNe (1, Ky} 6(k)
> Cross-validated risk estimator : G2°(k) = n% Z,:Bn(,.)zz(roi(Pé,,) — e (PS,)(Z))?

< Cross-validated selector : kP° = arg MiNke(1,. Ky} 6% (k)
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Theoretical results for the super learner

Theorem

Suppose that there exists 7 < M < oo such that

ITo(Pg.)| <M and  sup |¢(Z)| < M almost surely.
Zezpev

)

Suppose that the censoring time C and the pair of variables (T*, Z) are independent.
If log(Kn)/n2 — 0, then
n—o0
E[6a(k™) — 6a(K)] — 0,
n—o0
and

0,(kP) — G,(k) — 0 in probability.
n—oo
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Analysis of the maintenance dataset

1,000 machines

T* : number of weeks in activity

T = T* A C ranges from 1 to 93 weeks
40% of censored data

T =388

vV V.V v vY

Five covariates : pressure (cont.), moisture (cont.), temperature (cont.), team (three
levels), manufacturer (four levels)

» Algorithms :

> RSF
> pseudo-observations + super learner based on LM, LASSO, GAM, RF.
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Analysis of the maintenance dataset

S
£ 64
[
o
o
S
=]
&
= 41
@
Q
€
=}
2
]
£ 24
k]
& o
?
I +
9] %]
« Kl
o
Learning model
Variable P-value RSF | P-value P.obs.+-SL
Pressure 1 1
Moisture 0.257 1
Temperature | 0.003 1
Team 0 0
Provider 0 0

TABLE — Tests for variable importance based on 40 multi-splits.
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Analysis of the colon dataset

> 888 patients

» T* : time elapsed from randomisation to minimum between recurrence and death.

» T = T" A C ranges from 8 to 3329 days (9.12 years)

» 46% of censored data

> 1 =2672

» Ten covariates : type of treatment administrated (three levels), sex (binary), age (in
years), obstruction indicator of the colon by the tumor (binary), whether the colon
was perforated or not (binary), whether or not it adhered to nearby organs (binary),
number of lymph nodes with detectable cancer (integer value that ranges from 0 to
33), level of differentiation of the tumor (three levels), extent of local spread (four
levels), whether the time from surgery to registration was short or long (binary).

» Algorithms :

» Cox model
> RSF
> pseudo-observations + super learner based on LM, LASSO, GAM, RF.
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Analysis of the colon dataset

1200000 ‘ ‘

1100000

1000000

900000

Estimated mean squared error

8 2 £
o
Learning model
Variable P-value Cox | P-value RSF | P-value P.obs.+SL
Treatment 0 0.084 0.002
Sex 0.981 0.724 0.622
Age 1 1 1
Obstruction 1 1 1
Perforation 1 1 1
Adherence 1 1 1
Nodes 1 0.637 0.662
Differentiation | 1 1 1
Spread 0 0.063 0.002
Surgery 1 1 1

TABLE — Tests for variable importance based on 40 multi-splits.

Olivier Bouaziz (MAP5) Prediction with time to event data March 26, 2024 42 /42



	Background in time to event analysis
	Prediction of the (restricted) time based on pseudo-observations
	Evaluation of the quality of predictions
	Conformal prediction intervals
	Variable importance
	Pseudo-observations and the super-learner
	Références
	Références

