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Presentation of the problem

We consider the following penalised criterion :

β ∈ arg min
β∈Rp

{
Eλ(β) := C(β) + λL0(β)

}
with

I C : Rp → R ∪ {+∞}, dom(C) := {β ∈ Rp , C(β) < +∞} 6= ∅,
I L0(β) := #{j ∈ {1, 2, . . . , p}, βj 6= 0},
I λ > 0 is a regularisation parameter.

Examples of contrast functions :

I C(β) = ‖Y − Xβ‖2, Y ∈ Rn response variable, X design matrix (dim= n × p).

I C(β) = −`n(Y1, . . . ,Yn;β) is minus a log-likelihood function.
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The adaptive-ridge algorithm

Let w (0) ∈ (R∗+)p, δ > 0, q ∈ [0, 2). The ARδλ,q scheme is an iterative algorithm :
for k = 1, 2, . . . 

β(k+1) ∈ arg min
β∈Rp

{
C(β) + λ

2

∑p
j=1 w

(k)
j β2

j

}
w

(k+1)
j =

(
|β(k+1)

j |2 + δ2
) q−2

2
, j=1,. . . ,p.

We will study two scenarios :

I q ∈ (0, 2), δ ≥ 0

I q = 0, δ > 0

Rippe, R. C. A., Meulman, J. J. and Eilers, P. H. C. Visualization of Genomic Changes by Segmented Smoothing Using an L0
Penalty. PlosOne (2012).

F. Frommlet and G. Nuel, An Adaptive Ridge Procedure for L0 Regularization. PlosOne (2016).
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L0 norm approximation - Heuristic

When δ � 1, q = 0

p∑
j=1

w
(k)
j β2

j =

p∑
j=1

β2
j

β2
j + δ2

' ‖β‖0 =

{
0 if βj = 0

1 if βj 6= 0
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Our main contribution

I In the case q ∈ (0, 2), δ ≥ 0, we show that the AR algorithm is related to the
following problem :

β̃ ∈ arg min
β∈Rp

{
Eλ,q(β) := C(β) + λ ‖β‖qq

}

I In the case q = 0, δ > 0, we show that the AR algorithm is related to the following
problem :

β̃ ∈ arg min
β∈Rp

{
Fλ,δ(β) := C(β) + λ

p∑
j=1

log
(
1 + (βj/δ)2

)
log (1 + δ−2)︸ ︷︷ ︸
−−−→
δ→0

1βj 6=0

}
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Two smooth approximations of the L0 penalty

`q penalty square-log penalty
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Variational formulation of the `q penalty

Proposition (R. Abergel, O. B., G. Nuel)

For all β = (β1, . . . , βp) ∈ Rp, for all q > 0 and for all ν > q, we have

‖β‖qq = inf
η=(η1,η2,...,ηp)∈(R∗+)p

(
Lνq (β, η) :=

p∑
j=1

q

ν
· |βj |

ν

ηj
+
ν − q

ν
· η

q
ν−q

j

)
,

and when β ∈ (R∗)p, the infimum is attained at η = |β|ν−q.

I ν = 2, q ∈ (0, 2).

Chan, R. H. and Liang, H.-X. Half-Quadratic Algorithm for lp -lq Problems with Applications to TV-l1 Image Restoration

and Compressive Sensing. Efficient Algorithms for Global Optimization Methods in Computer Vision(2014).

I ν = 2, q = 1.

Mairal, J., Bach, F. and Ponce, J. Sparse Modeling for Image and Vision Processing. Foundations and TrendsR in

Computer Graphics and Vision (2014).
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The adaptive ridge as a Majorize-Minimize (MM) algorithm

For β
(k)
j ∈ R∗, set ν = 2, η

(k)
j = |β(k)|2−q. For all βj ∈ R, we have :

‖β‖qq ≤ L2
q(β, |β(k)|2−q) =

p∑
j=1

q

2
· |βj |2

|β(k)
j |2−q

+
2− q

2
· |β(k)

j |
q,

with L2
q(β(k), |β(k)|2−q) = ‖β(k)‖qq. (β(k) = 0.3 and q = 0.4 in the plot)
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The adaptive ridge as a Majorize-Minimize (MM) algorithm

I For λ > 0, for all βj ∈ R and for all β
(k)
j ∈ R∗, we have

Eλ,q(β) := C(β) + λ ‖β‖qq ≤ C(β) + λL2
q(β, |β(k)|2−q)︸ ︷︷ ︸

g(β|β(k))

,

with g(β(k) | β(k)) = Eλ,q(β(k)).

I Let β(k+1) = arg minβ g(β | β(k)). Then :

Eλ,q(β(k+1)) ≤ g(β(k+1) | β(k)) ≤ g(β(k) | β(k)) = Eλ,q(β(k)).
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Properties of the adaptive ridge algorithm

β(k+1) = arg min
β

g(β | β(k)) = arg min
β

{
C(β) + L2

q(β, |β(k)|2−q)
}

= arg min
β

{
C(β) +

λq

2

p∑
j=1

|βj |2

|β(k)
j |2−q

}
·

I The AR0
λq,q algorithm minimises Eλ,q !

I But the procedure is only valid as long as the (β(k)), k = 0, 1 . . . remain in (R∗)p.

I We introduce r : R2 → R ∪ {+∞} the function defined by

∀(x , y) ∈ R2 , r(x , y) =


0 if x = y = 0

+∞ if x 6= 0 and y = 0
x
y

otherwise.
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Properties of the adaptive ridge algorithm (q > 0)

Proposition (R. Abergel, O. B., G. Nuel) : q > 0, δ = 0

The modified AR0
λq,q algorithm defined by β(k+1) ∈ arg min

β∈Rp

{
C(β) + λq

2

∑p
j=1 r(|βj |2, η

(k)
j )

}
η

(k+1)
j = |β(k+1)

j |2−q , j=1,. . . ,p.

satisfies the property Eλ,q(β(k+1)) ≤ Eλ,q(β(k)) ∀k ∈ N, with

Eλ,q(β) = C(β) + λ‖β‖qq

Proposition (R. Abergel, O. B., G. Nuel) : q > 0, δ > 0

The ARδλq,q algorithm, δ > 0, satisfies the property Eδλ,q(β(k+1)) ≤ Eδλ,q(β(k)) ∀k ∈ N, with

Eδλ,q(β) = C(β) + λ‖β2 + δ2‖q/2
q/2

R. Abergel, O. Bouaziz, O., G. Nuel. A Review on the Adaptive-Ridge Algorithm with several extensions.

https://helios2.mi.parisdescartes.fr/~obouaziz/adaptive-ridge_preprint2023.pdf
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Properties of the adaptive ridge algorithm (q = 0)

Proposition (R. Abergel, O. B., G. Nuel) : q = 0, δ > 0

The ARδλ′,q algorithm, δ > 0, λ′ = 2λ/ log(1 + δ−2), satisfies the property

Fλ,δ(β(k+1)) ≤ Fλ,δ(β(k)) ∀k ∈ N, with

Fλ,δ(β) := C(β) + λ

p∑
j=1

log
(
1 + (βj/δ)2

)
log (1 + δ−2)︸ ︷︷ ︸
−−−→
δ→0

1βj 6=0

R. Abergel, O. Bouaziz, O., G. Nuel. A Review on the Adaptive-Ridge Algorithm with several extensions.

https://helios2.mi.parisdescartes.fr/~obouaziz/adaptive-ridge_preprint2023.pdf
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Simulations setting

I Linear regression model

Y = Xβ? + ε,

Xij ∼ U(0, 1), εi ∼ N (0, 0.22), i = 1, . . . , n, j = 1, . . . , p.

I

∀j = 1, . . . , p, β?j =

{
1 if Uj > 0.95
0 otherwise

where Uj ∼ U(0, 1), j = 1, . . . , p.

I n = 300, p = 150.

I C(β) = ‖Y − Xβ‖2
2/2.

The AR algorithm is implemented using a conjugate-gradient based method.

I The algorithm is named aridge cg

I Iterative algorithm : computation time is O(p2) at each iteration.
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Simulations : illustration of AR estimates

(a) estimated (local) minimizer of the `q penalized energy

(b) estimated (local) minimizer of the log-square penalized energy
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Simulations : sensitivity to initialisation

(a) module aridge cg with q = 0.1 and δ = 0

(b) module aridge cg with q = 0.3 and δ = 0
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Simulations : sensitivity to initialisation

(c) module aridge cg with q = 0.8 and δ = 0
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Simulations : influence of the δ parameter

(a) module aridge cg with δ = 0 or δ = 0.1

(b) module aridge cg with δ = 0 or δ = 0.05
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Simulations : regularisation paths

highly sparse dataset weakly sparse dataset
(90% of zero-entries in β?) (42% of zero-entries in β?)

I Plain curves : active coordinates.

I Dashed curves : coordinates equal to 0.
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Background in time to event data : right-censoring

I Positive time variable of interest : T .

I Observations :{
T obs

i = Ti ∧ Ci

∆i = 1Ti≤Ci

I Independent censoring : T ⊥⊥ C

I The hazard rate and a key relation :

h(t) := lim
4t→0

P[t ≤ T < t +4t | T ≥ t]

4t

= lim
4t→0

P[t ≤ T obs < t +4t,∆ = 1 | T obs ≥ t]

4t
·

Many estimators (Nelson Aalen, Kaplan-Meier, . . .) are based on this relation.

I The likelihood of the observed data is equal to :

n∏
i=1

f (T obs
i )∆iS(T obs

i )1−∆i =
n∏

i=1

h(T obs
i )∆i exp

(
−
∫ T obs

i

0

h(t)dt

)
,

where f is the density of T and S(t) = P[T > t].
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The piecewise constant hazard model
I The model :

h(t) =
L∑

l=1

αl1cl−1<t≤cl

I Goal : estimate the αls.

The log-likelihood is equal to :

`n(h) =
L∑

l=1

{
Ōl log (αl)− αl R̄l

}
,

where

I Ōl =
∑

i ∆i1cl−1<T obs
i ≤cl

: number of observed events in interval (cl−1, cl ]

I R̄l =
∑

i (T
obs
i ∧ cl − cl−1)1T obs

i >cl−1
: total time at risk in interval (cl−1, cl ]

The maximum likelihood estimator is explicit :

α̂mle
l =

Ōl

R̄l

I We want to choose the number and location of the cuts from the data
I We start from a large grid of cuts (L = 100, 1 000, . . .)
I We use a fused AR penalisation to constrain similar adjacent hazard values to be

equal.
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Ōl log (αl)− αl R̄l

}
,

where

I Ōl =
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Penalising the maximum likelihood estimator with the fused AR

Set logαl = al . Implement the AR with q = 0 and δ > 0.
a(k+1) ∈ arg min

a∈RL

{
`n(a)− λ

2

∑L−1
l=1 w

(k)
l (al+1 − al)

2
}

w
(k+1)
l =

((
a

(k+1)
l+1 − a

(k+1)
l

)2

+ δ2

)−1

, l = 1, . . . , L.

I The penalized estimator is no longer explicit.

I Maximization is performed from the Newton-Raphson algorithm. For a given
sequence of weights w , the mth Newton Raphson iteration step is obtained from the
equation

a(m) = a(m−1) + I(a(m−1),w)−1U(a(m−1),w),

where I is the opposite of the Hessian matrix, U is the score vector.

I The Hessian matrix is tri-diagonal.

I =⇒ computation time for the inversion of the Hessian is O(L)

Olivier Bouaziz (MAP5) The AR algorithm for time to event data June 12, 2023 26 / 41



Penalising the maximum likelihood estimator with the fused AR

Set logαl = al . Implement the AR with q = 0 and δ > 0.
a(k+1) ∈ arg min

a∈RL

{
`n(a)− λ

2

∑L−1
l=1 w

(k)
l (al+1 − al)

2
}

w
(k+1)
l =

((
a

(k+1)
l+1 − a

(k+1)
l

)2

+ δ2

)−1

, l = 1, . . . , L.

I The penalized estimator is no longer explicit.

I Maximization is performed from the Newton-Raphson algorithm. For a given
sequence of weights w , the mth Newton Raphson iteration step is obtained from the
equation

a(m) = a(m−1) + I(a(m−1),w)−1U(a(m−1),w),

where I is the opposite of the Hessian matrix, U is the score vector.

I The Hessian matrix is tri-diagonal.

I =⇒ computation time for the inversion of the Hessian is O(L)

Olivier Bouaziz (MAP5) The AR algorithm for time to event data June 12, 2023 26 / 41



Penalising the maximum likelihood estimator with the fused AR

Set logαl = al . Implement the AR with q = 0 and δ > 0.
a(k+1) ∈ arg min

a∈RL

{
`n(a)− λ

2

∑L−1
l=1 w

(k)
l (al+1 − al)

2
}

w
(k+1)
l =

((
a

(k+1)
l+1 − a

(k+1)
l

)2

+ δ2

)−1

, l = 1, . . . , L.

I The penalized estimator is no longer explicit.

I Maximization is performed from the Newton-Raphson algorithm. For a given
sequence of weights w , the mth Newton Raphson iteration step is obtained from the
equation

a(m) = a(m−1) + I(a(m−1),w)−1U(a(m−1),w),

where I is the opposite of the Hessian matrix, U is the score vector.

I The Hessian matrix is tri-diagonal.

I =⇒ computation time for the inversion of the Hessian is O(L)

Olivier Bouaziz (MAP5) The AR algorithm for time to event data June 12, 2023 26 / 41



Model selection for the fused Adaptive Ridge estimator (n = 400)
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I In red the true hazard function

I In black the hazard estimator for λ = 0.1
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Model selection for the fused Adaptive Ridge estimator (n = 400)
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I In black the hazard estimator for λ = 0.55
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Model selection for the fused Adaptive Ridge estimator (n = 400)
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I In red the true hazard function

I In black the hazard estimator for λ = 0.77
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Model selection for the fused Adaptive Ridge estimator (n = 400)
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I In black the hazard estimator for λ = 1.54
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Model selection for the fused Adaptive Ridge estimator (n = 400)
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I In black the hazard estimator for λ = 6.16
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Model selection for the fused Adaptive Ridge estimator (n = 400)
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I In red the true hazard function

I In black the hazard estimator for λ = 52.70
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Model selection for the fused Adaptive Ridge estimator

Three different methods to perform model selection :

1. BIC(D) = −2`n(âmle
D ) + D log n

2. AIC(D) = −2`n(âmle
D ) + 2D

3. K-fold Cross Validation (CV),

with D the dimension of the model :

D =
L−1∑
l=0

1{âmle
l+1,D − âmle

l,D 6= 0}.

Bouaziz, O. and Nuel, G. L0 regularization for the estimation of piecewise constant hazard rates in survival analysis. Applied
Mathematics (2017).

Package pchsurv available on GitHub : install github("obouaziz/pchsurv")
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Model selection for the fused Adaptive Ridge estimator using the BIC
(n = 400)
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Outline

1 Study of the adaptive ridge algorithm

2 Simulations

3 The adaptive ridge procedure for piecewise constant hazards

4 The adaptive ridge procedure for interval-censored data
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The dental dataset

Data collected from Eva Lauridsen at the hospital Rigshospitalet (Denmark).

I Study of 322 patients with 400 avulsed and replanted permanent teeth from 1965 to
1988.

I The variable of interest is time from replantation until the ankylosis complication.
I Patients are examined at intermittent visits to the dentist.

I Left-censoring (28%) if ankylosis occurred before the first visit.
I Interval-censoring (35.75%) if ankylosis occurred between two visits.
I Right-censoring (36.25%) if ankylosis did not occur yet after the last visit.

I Covariates :
I stage of root formation : 72.5% mature teeth, 27.5% immature teeth
I length of extra-alveolar storage : mean time is 30.9 minutes
I type of storage media : 85.25% physiologic, 14.75% non physiologic
I age of the patient : mean age for mature teeth is 16.81 years

Olivier Bouaziz (MAP5) The AR algorithm for time to event data June 12, 2023 31 / 41



The dental dataset

Data collected from Eva Lauridsen at the hospital Rigshospitalet (Denmark).

I Study of 322 patients with 400 avulsed and replanted permanent teeth from 1965 to
1988.

I The variable of interest is time from replantation until the ankylosis complication.
I Patients are examined at intermittent visits to the dentist.

I Left-censoring (28%) if ankylosis occurred before the first visit.
I Interval-censoring (35.75%) if ankylosis occurred between two visits.
I Right-censoring (36.25%) if ankylosis did not occur yet after the last visit.

I Covariates :
I stage of root formation : 72.5% mature teeth, 27.5% immature teeth
I length of extra-alveolar storage : mean time is 30.9 minutes
I type of storage media : 85.25% physiologic, 14.75% non physiologic
I age of the patient : mean age for mature teeth is 16.81 years

Olivier Bouaziz (MAP5) The AR algorithm for time to event data June 12, 2023 31 / 41



The raw data on a subsample of size 100
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The observed likelihood

The observations are Li , Ri , i = 1, . . . , n.

I 0 = Li < Ri < +∞ for left-censored observation (∆i = 1)

I 0 < Li < Ri < +∞ for interval-censored observation (∆i = 1)

I 0 < Li < Ri = +∞ for right-censored observation (∆i = 0)

With these types of data, the observed likelihood is equal to :

Lobs(θ) =
n∏

i=1

{S(Li | Zi ,θ)− S(Ri | Zi ,θ)}∆i ×
{
S(Li | Zi ,θ)

)}1−∆i

.
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With these types of data, the observed likelihood is equal to :

Lobs(θ) =
n∏

i=1

{
exp

(
−
∫ Li

0

h0(t)dteβZi

)(
1− exp

(
−
∫ Ri

Li

h0(t)dteβZi

))}∆i

×
{

exp
(
−
∫ Li

0

h0(t)dteβZi

)}1−∆i

,

for the Cox model h(t | Zi ) = h0(t) exp(βZi ).
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The observed likelihood

I The piecewise constant model for the baseline :

h0(t) =
L∑

l=1

exp(al)1cl−1<t≤cl

I The model parameter is : θ = (a1, . . . , aL, β) ∈ RL+d

Maximization of :

Lobs(θ) =
n∏

i=1

{
exp

(
−
∫ Li

0

h0(t)dteβZi

)(
1− exp

(
−
∫ Ri

Li

h0(t)dteβZi

))}∆i

×
{

exp
(
−
∫ Li

0

h0(t)dteβZi

)}1−∆i

,

requires to use the Newton-Raphson algorithm.

I The Hessian is of full rank !

I Intractable solution if L is large !
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The EM algorithm

The complete likelihood is defined as

L(θ) =
n∏

i=1

f (Ti | Zi ,θ).

Introduce data = (Li ,Ri ,Zi ).

I E-step :

E[log(f (Ti | Zi ,θ))|data,θold] =

∫
f (t | data,θold) log f (t | Zi ,θ)dt

I Under the assumptions
I P(T ∈ [L,R]) = 1,
I P(T ≤ t | L = `,R = r ,Z) = P(T ≤ t | ` ≤ T ≤ r ,Z) (see Zhang, Sun, Zhao, and

Sun, Canadian J. of Stat., 2005),

we have

f (t | data,θold) =
f (t | Zi ,θold)1(Li < t < Ri )

S(Li | Zi ,θold)− S(Ri | Zi ,θold)
·
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Using the EM algorithm

I The M-step corresponds of maximizing, with respect to θ,

Q(θ|θold) := ET1:n|data,θold
[log(L(θ))]

=
n∑

i=1

L∑
l=1

{(
ai,l −

l−1∑
j=1

(cj − cj−1)eai,j
)
Aold

l,i − eai,lBold
l,i

}
,

with ai,l := al + βZi and with explicit expressions of Aold
l,i and Bold

l,i .

I Aold
l,i and Bold

l,i depend only on θold,Li ,Ri ,Zi .
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I In the absence of covariates (Zi = 0, ai,l = al , θ = (a1, . . . , aL)) : the M-step is
explicit.
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with ai,l := al + βZi and with explicit expressions of Aold
l,i and Bold

l,i .

I Aold
l,i and Bold

l,i depend only on θold,Li ,Ri ,Zi .

I In the absence of covariates (Zi = 0, ai,l = al , θ = (a1, . . . , aL)) : the M-step is
explicit.

I In the general regression framework : the M-step is solved using the
Newton-Raphson procedure.
I The block matrix of the Hessian for the al s is diagonal !
I Using the Schurr complement, inversion of the Hessian is of order O(L) in the case

L� d .
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A penalized EM algorithm

I We want to choose the number and location of the cuts from the data

I We start from a large grid of cuts (L = 100, 1 000, . . .)

I We use the adaptive ridge. At the k th step we maximise

`(θ|θold) = Q(θ|θold)− λ

2

L−1∑
l=1

w
(k−1)
l (al+1 − al)

2,

with

w
(k−1)
l =

((
a

(k−1)
l+1 − a

(k−1)
l

)2

+ δ2

)−1

,

and δ � 1.

I The block matrix of the Hessian for the als is now tri-diagonal !

I Using the Schurr complement, inversion of the Hessian is still of order O(L) in the
case L� d .
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Dental dataset - without covariates

I The adaptive ridge method finds four cuts : 100, 500, 800, 900.

I 95% confidence intervals computed using the bootstrap.
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Dental dataset - Cox model

Covariates HR= eβ̂ 95% CI p-value

Mature 2.00 [1.74; 2.29] 1.89× 10−5

Storage time (hours) 1.23 [1.11; 1.34] 0.0017
Physiologic storage 0.93 [0.81; 1.06] 0.6980

Age>20 (mature teeth) 1.27 [0.99; 1.61] 0.1272

I O. Bouaziz, E. Lauridsen, G. Nuel. Regression modelling of interval-censored data based on the adaptive-ridge procedure.

Journal of Applied Statistics (2022)

I E. Lauridsen, J. Andreasen, O. Bouaziz, L. Andersson. Risk of ankylosis of 400 avulsed and replanted human teeth in
relation to length of dry storage. A re-evaluation of a previous long-term clinical study.

Dental Traumatology (2019)
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Discussion and extensions

I Connections with similar works :
I The Iteratively Reweighted Least Squares (IRLS) algorithm : AR algorithm with ν = 2

and update of δ

I. Daubechies, R. DeVore, M. Fornasier, C. S. Gunturk. Iteratively reweighted least squares minimization for sparse

recovery. Communications on Pure and Applied Mathematics (2010).

I The IRL1 algorithm corresponds : AR algorithm with ν = 1 and update of δ

E. J. Candes, M. B. Wakin, S. P. Boyd. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier

analysis and applications (2008)

D. Needell. Noisy signal recovery via iterative reweighted L1- minimization. Conference Record of the Forty-Third

Asilomar Conference on Signals, Systems and Computers (2009)

I The adaptive Lasso algorithm : AR algorithm with two steps, ν = 1 (δ = 0).

H. Zhou. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association (2006)

I An AR type algorithm can also be derived as a `q constrained problem.

R. Abergel, O. Bouaziz, O., G. Nuel. A Review on the Adaptive-Ridge Algorithm with several extensions.

https://helios2.mi.parisdescartes.fr/~obouaziz/adaptive-ridge_preprint2023.pdf

I In time to event data, use of the fused Adaptive Ridge for a piecewise constant
baseline hazard provides a flexible model and interpretable results.

I For interval-censored data, the EM algorithm + piecewise constant baseline hazard
leads to tractable solutions !
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