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Abstract

The paper considers the use of naive estimation techniques that do not take into account
censoring in survival analysis. These naive estimators are often proposed by students who are
not familiar with the topic of survival analysis. Using simple mathematical arguments and
simulation experiments these estimators are shown to behave poorly in presence of censored
data. We stress that censored data should be analyzed using only adapted methods such
as the Kaplan-Meier estimator. The article is addressed to both researchers who are not
familiar with survival analysis and to teachers who want to emphasize the needs for new
estimation techniques in an introductory lesson in survival analysis.

Keywords: Biased estimators, Censoring, Follow-up studies, Kaplan-Meier estimator,
Statistics education, Survival analysis.

1 Introduction

Teaching survival analysis has become standard in many statistical courses and several text-
books on the subject are nowadays available. Usually these books either focus on complex
martingale theory or directly introduce standard estimation techniques in survival analysis
without discussing the need for specific tools in this context. Yet estimation strategies can be
easily discussed with students: when asked they usually propose three naive estimators that are
constructed by neglecting the censoring effect or treating it as a missing at random variable. As
shown in the paper, bias of these estimators can be easily exhibited, using only basic probabil-
ity calculations. While many textbooks present dataset to introduce the concept of censoring
(which is indeed of major interest) we emphasize the implementation of basic simulations which
illustrate how all naive estimators give biased results. Simulating data has been shown to be
an effective way to teach statistics (see Sigal and Chalmers (2016)): in the context of survival
analysis it is especially useful as it helps students to understand the concept of censoring and
how follow-up data are collected. Finally, modifying these naive estimators can lead to a more
efficient estimation strategy. We explain that a natural quantity of interest in survival analy-
sis is the hazard rate as it can be estimated unbiasedly and a direct extension is the famous
Kaplan-Meier estimator (Kaplan and Meier (1958)) of the survival function.

Simulation studies are presented in the paper which illustrate the strong performance of the
Kaplan-Meier estimator and how all naive methods will lead to biased results. In particular,
increasing the sample size will not improve the performance of naive methods and even in a
case of low censoring rate they will perform poorly compared to the Kaplan-Meier estimator.
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2 Naive estimation methods lead to biased results when dealing
with censored data

When introducing survival analysis it is important to start with some standard examples of
follow-up data such as the remission data of leukemia patients from Freireich et al. (1963).
This is a double blind clinical trial where some of the patients were administrated a treatment,
others a placebo and the variable of interest is the remission time, that is the time in weeks
between two relapses of a patient (see Table 1). The times with a plus sign next to them are
censored times while other times represent the relapse times of interest. A censored time is not
directly of interest but it provides the information that the relapse time has not yet occurred
at the censoring time and will occur at some time after it (for instance, the fourth observed
time in the treatment group of Table 1 is a censored time which informs us that this patient
was still in remission after 6 weeks but its exact relapse time is unknown). This dataset can be
discussed to explain the concept of clinical trial and then to focus on censored data. An easy
conclusion reached by students is that taking the drug seems to result in longer remission times
and therefore into more censoring. Consequently, removing censoring will provide an under
estimation of the remission times of patients who took the drug. Discussion of the dataset can
be found for instance in Kleinbaum and Klein (2006). Other interesting dataset for introductory
lessons in survival analysis can also be found in Andersen et al. (1993) or in Collett (2003).

Table 1: Remission times (weeks) for two groups of leukemia patients from the Freireich dataset (1963).
+ denotes censoring due to study end before relapse, lost to follow-up or withdraws.

Treatment group (n = 21) Placebo group (n = 21)

6 6 6 6+ 7 9+ 10 1 1 2 2 3 4 4
10+ 11+ 13 16 17+ 5 5 8 8 8
19+ 20+ 22 23 25+ 8 11 11 12 12
32+ 32+ 34+ 35+ 15 17 22 23

In the following we show how the teacher can illustrate, first using some mathematical
arguments and then using simulation experiments, that naive estimators are not adapted to
deal with such types of data and how they will result in biased estimates. We introduce the
classical notations for right-censored data: Ti = min(T̃i, Ci), ∆i = I(T̃i ≤ Ci) for i = 1, . . . , n,
where T̃i is the variable of interest (time to relapse in the Freireich dataset), Ci the censoring
variable (time to end of study, lost to follow-up or withdraw) and I represents the indicator
function. For instance, in the treatment group of Table 1, T1 = T2 = T3 = T4 = 6 and
∆1 = ∆2 = ∆3 = 1, ∆4 = 0. We also note F , G the cumulative distribution functions of T̃ ,
C and we denote by S the survival function of T̃ , that is S = 1− F . The focus will be on the
estimation of this survival function which represents, in the Freireich dataset, the probability of
being still in remission at a given time point. When students are asked to estimate the survival
function using only the observed data (Ti,∆i), they usually propose one of the following three
estimators:

1. A first estimator is obtained by computing the empirical cumulative survival function
directly from the observations Ti:

Ŝ1(t) =
1

n

n∑
i=1

I(Ti > t)·

2. A second estimator is obtained by computing the empirical cumulative survival function,
but from the uncensored observations {Ti,∆i = 1} only:

Ŝ2(t) =
1

n

n∑
i=1

I(Ti > t,∆i = 1)·
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3. A third estimator is built by rescaling the previous estimator by the proportion of uncen-
sored observations:

Ŝ3(t) =
1∑
j ∆j

n∑
i=1

I(Ti > t,∆i = 1)·

Table 2: Estimation of the survival function in the treatment group of the Freireich dataset using the
three naive estimators and the Kaplan-Meier estimator (defined at page 6).

t Ŝ1(t) Ŝ2(t) Ŝ3(t) ŜKM (t)

0 1 9/21 ' 0.43 1 1
6 17/21 ' 0.81 6/21 ' 0.29 6/9 ' 0.67 1− 3/21 ' 0.86
7 16/21 ' 0.76 5/21 ' 0.24 5/9 ' 0.56 (1− 3/21)× (1− 1/17) ' 0.81
9 0.71 0.24 0.56 0.81
10 0.62 0.19 0.44 0.75
11 0.57 0.19 0.44 0.75
...

...
...

...
...

Computation of these three estimators on the treatment group of the Freireich dataset are
presented in Table 2, in the first three columns.

It is very common for students to use the first estimator, often because they cannot un-
derstand the concept of censoring and they think the observed time variable is the variable
of interest. The estimator Ŝ1(t) is an unbiased and consistent estimator of H(t) := P[T > t].
Under the independent censoring assumption, which assumes that T̃ is independent of C, it is
straightforward to write

H(t) = P[T̃ > t, C > t] = S(t)(1−G(t)),

which implies that H(t) ≤ S(t) for all t ≥ 0 and the equality holds true for t = 0, for t = ∞
and for all t such that there is no censoring in the dataset occurring before time t. One sees
that for very small t, since there is a lower risk to get censored for lower times, the bias will be
small. But as t gets larger the bias gets bigger (in absolute value) until it reaches a maximum
and then decreases and equals 0 at infinity.

The second estimator focuses on observed events of interest only and treats the censored
events as missing at random variables. As a matter of fact, Ŝ2(t) is an unbiased and consistent
estimator of P[T > t,∆ = 1] so, if censoring could be treated as missing variables, then focusing
on the observations {Ti,∆i = 1} should only deteriorate the sample size of the estimator and
one should have P[T > t,∆ = 1] = P[T̃ > t]. This is a common mistake made by students and
the teacher can easily show that this is not the case, no matter what is the distribution of C.
Using Fubini’s theorem, the mathematical arguments are as follows:

P[T > t,∆ = 1] =

∫∫
I(u > t, u ≤ v)dF (u)dG(v)

=

∫
I(u > t)

(∫
I(u ≤ v)dG(v)

)
dF (u)

=

∫ ∞
t

(1−G(u))dF (u) = S(t)−
∫ ∞
t

G(u)dF (u). (1)

It is then directly seen that P[T > t,∆ = 1] ≤ S(t) for all t ≥ 0. One should note that for t = 0,
the formula gives P[∆ = 1], the probability to be uncensored, and

P[∆ = 1] = 1−
∫ ∞
0

G(u)dF (u).
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It means that the estimator is already biased for t = 0, with a bias equal to
∫∞
0 G(u)dF (u),

which is the probability of being censored. Since
∫∞
t G(u)dF (u) in (1) is a decreasing function

of t, the bias will decrease (in absolute value) with respect to t. To conclude, the bias equals
the proportion of censoring for t = 0 and as t grows it decreases and reaches 0 when t tends to
infinity.

The last estimator tries to improve the performances of Ŝ2 by appropriately weighting the
estimator by the number of observed events of interest. For teaching purposes, simulation
experiments are sufficient to assess its performance. However, we provide the mathematical
arguments to derive the asymptotic bias of that estimator in the Appendix section where it is
shown that this estimator is biased downwards. The weights

∑
j ∆j used in Ŝ3 are not efficient

as they do not take into account the time dependent structure of the censoring process (mainly
the fact that the longer a patient is followed, the greater chances he has to be censored). We
will show that, using the independent censoring assumption, a quantity that can be estimated
without bias is the hazard rate. From this quantity the survival function is easily estimated.
Before introducing the usual estimator used in survival analysis it is of interest to illustrate
the biased performances of these naive estimators through some simulations conducted by the
students.

3 Performance of the naive estimators on simulated data

After discussion of the theoretical properties of these naive estimators, the students are asked
to simulate some survival data. This implies to first simulate the times of interest (which are
therefore all known by the user) and some censoring times. The observed times are then derived
by taking the minimum between these two times for each individual. Simulations are beneficials
to students for two reasons. First of all, they realize that the observed censored times are not
equal to the times of interest but are always lower. Secondly, they can experiment different
estimation strategies and directly observe that naive estimators always fail to provide accurate
estimations.

In a first scenario the variable of interest is simulated as a uniform variable with parameters
equal to 0 and 10 and the right-censoring variable as a uniform variable with parameters equal
to 2 and 8. This example is interesting because many students believe that if censoring occurs
“at random”, then ignoring it will not affect substantially the estimation results. A second
scenario considers more realistic random variables: the variable of interest is simulated as a
Weibull distribution with shape parameter equal to 2 and scale parameter equal to 5 (using
the terminology of the R software) and the right-censoring variable as a Weibull distribution
with shape parameter equal to 1 and scale parameter equal to 5.8 (which is an exponential
distribution). Both scenarios result in 50% of censoring.

For a single sample of size n = 60, estimated survival curves are shown in Figure 1 for both
scenarios. The true survival curves are also plotted along with the optimal estimator defined
as:

Ŝ0(t) =
1

n

n∑
i=1

I(T̃i > t).

This estimator is not allowed in practice as one does not observe all the T̃is in the presence of
censoring but it is used as a reference for the optimal estimation performance. In both scenarios,
all estimators behave poorly compare to Ŝ0 and they are all biased downwards as previously
studied. Interestingly, the uniform scenario clearly shows that censoring cannot be treated as a
missing at random variable. In this scenario the less performant estimator is Ŝ2, then comes Ŝ3
and finally Ŝ1. This last estimator has a good performance for t ≤ 2 as no censoring can occur
before time 2 but then quickly deteriorates. In the Weibull scenario, the performance of the
two estimators Ŝ1 and Ŝ3 is switched with the latter being more accurate than the former. As
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expected, in both scenarios, the estimator Ŝ2 is already biased for t = 0, with a value of Ŝ2(0)
equal to the proportion of censoring in the dataset.
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Figure 1: Naive survival estimates in the uniform scenario (left panel) and the Weibull scenario (right
panel) with 50% of censoring.

Finally, computations of mean estimates were also performed using the estimation techniques
corresponding to the different naive estimators. The optimal mean estimator is defined as
Ê0 =

∑
i T̃i/n and the other mean estimators as:

Ê1 =
1

n

n∑
i=1

Ti,

Ê2 =
1

n

n∑
i=1

Ti∆i,

Ê3 =
1∑
j ∆j

n∑
i=1

Ti∆i·

As an illustration, on the samples used to obtain Figure 1, we found for the uniform scenario:
ê0 = 5.10, ê1 = 3.37, ê2 = 1.15 and ê3 = 2.57 while the true mean is equal to 5. For the Weibull
scenario the results are: ê0 = 4.42, ê1 = 2.88, ê2 = 1.76 and ê3 = 3.65 while the true mean is
approximately equal to 4.43. These results give the same tendency as for the survival estimates,
the mean estimates having the advantage to summarize the properties of the estimators over
the whole period of time.

We also considered a low censoring rate case, which is of interest to illustrate the need for
appropriate estimation methods to deal with survival data even when only few observations
are censored. We took, for the censoring variable, a uniform distribution of parameters 2 and
34 in the uniform scenario and a Weibull distribution with scale parameter equal to 42 in the
Weibull scenario which lead to 10% of censoring for both scenarios. Monte-Carlo simulations
were then performed on 50, 000 replications. Mean estimates of the different estimators are
shown in Table 3 for the two scenarios and the two different censoring rates (10% and 50%).
It is seen that a substantial bias still remains even in the low rate censoring case when using
naive estimators. Other experiments were conducted using different sample sizes. Interestingly,
increasing the sample size does not improve at all the performance of the naive estimators and
each of them has the same bias in each case (results not shown here).
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Table 3: Bias of the naive mean estimators for the uniform and Weibull scenarios with 10% or 50% of
censoring. True mean equals 5 in the uniform scenario and equals 4.43 in the Weibull scenario.

10% of censoring 50% of censoring
ê0 ê1 ê2 ê3 ê0 ê1 ê2 ê3

Uniform scenario 0.001 -0.267 -0.736 -0.260 0.000 -1.400 -3.600 -2.199
Weibull scenario 0.000 -0.282 -0.551 -0.125 0.000 -1.540 -2.621 -0.817

4 Unbiased estimation of the hazard rate

The next step is to show that the crucial quantity of interest in survival analysis is the hazard
rate defined as:

λ(t) = lim
4t→0

P[t ≤ T̃ < t+4t|T̃ ≥ t]
4t

=
dF (t)

S(t)
·

The reason for that comes from our ability to estimate it without bias (except on the tail of
the distribution of T̃ ) using only the observations (Ti,∆i). Recall that H(t) = P[T > t] =
S(t)(1 − G(t)) under independent censoring and note H1(t) := P[T ≤ t,∆ = 1]. This is the
cumulative distribution function of the observed events of interest, and assuming the variable T
to be continuous, it has a density which we will represent by dH1(t). Similarly to formula (1),
we have:

H1(t) =

∫ t

0
(1−G(u))dF (u), and

dH1(t) = (1−G(t))dF (t).

Dividing both sides of the equation by H(t) gives dH1(t)/H(t) = dF (t)/S(t) = λ(t). This is an
important result because both functions dH1 and H can be easily estimated from the observa-
tions (Ti,∆i). Note that the only hypothesis used here to prove the relation dH1(t)/H(t) = λ(t)
is the independent censoring assumption. This equality can be rewritten as:

lim
4t→0

P[t ≤ T < t+4t,∆ = 1|T ≥ t]
4t

= lim
4t→0

P[t ≤ T̃ < t+4t|T̃ ≥ t]
4t

, (2)

which means that conditionally on not having experienced yet the event of interest at time t
(T̃ ≥ t), the probability that it occurs before time t + 4t is the same as the probability of
observing the event of interest before time t +4t knowing the individual is at risk at time t
(T ≥ t). The notion of individual at risk (T ≥ t) is crucial in survival analysis, due to this
relationship, and it means that the individual has not yet experienced the event of interest nor
been censored.

The left hand side of Equation (2) suggests a direct estimator of the hazard rate at any
observed time Ti as: λ̂(Ti) = ∆i/Ri where Ri =

∑
j I(Tj ≥ Ti) represents the number of

individuals at risk at time Ti. In case of ties, the estimator is easily adapted by replacing ∆i

by
∑

j I(Tj = Ti,∆i = 1). This estimator can be directly used to construct the Kaplan-Meier
estimator. The basic idea is that on the ordered time events T(1) < T(2) < · · · < T(k), where
k ≤ n represents the unique different time values (k = n in case of no ties), one can easily write:

S(T(i)) =

i∏
j=1

(
1− p(T(j)|T(j−1))

)
,

with p(tj |tj−1) := P[T̃ ≤ tj |T̃ > tj−1] and the Kaplan-Meier estimator is then defined as:

ŜKM (t) :=
i∏

j=1

(
1− λ̂(T(j))

)
, for t such that T(i) ≤ t < T(i+1).
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See Table 2 (last column) for the computation of the estimator on the Freireich dataset for some
time values. For more details about the Kaplan-Meier estimator, see among many authors An-
dersen et al. (1993) or Collett (2003).

5 Comparison with the Kaplan-Meier estimator

Finally, the lesson ends by comparing the performance of the Kaplan-Meier estimator to the
naive estimators under the different scenarios presented in the previous simulation setting. Plots
of the survival estimates are represented in Figure 2 for the same samples of size n = 60 as
previously, with 50% of censored data. Only the best of the three naive estimators are included
in these plots (Ŝ1 in the uniform scenario and Ŝ3 in the Weibull scenario). Clearly the Kaplan-
Meier is a very accurate estimator with similar performance as the optimal estimator Ŝ0.
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Ŝ3 estimate
Kaplan−Meier estimate

Figure 2: Estimation of the survival function with the best of the naive estimators and the Kaplan-
Meier estimator in the uniform scenario (left panel) and the Weibull scenario (right panel) with 50% of
censoring.

It is well know that the Kaplan-Meier estimator behaves poorly in the tail of the distribution
due to censoring. As a consequence, usual indicators are quantiles of the distribution such as the
median. However, another useful indicator in terms of estimation performance is the restricted
mean estimator (see for instance Andersen et al. (2004)) which has the advantage to summarize
the Kaplan-Meier estimator performance on a time interval. For a given τ > 0, the restricted
mean survival time is defined as

µ(τ) := E[min(T̃ , τ)] =

∫ τ

0
S(t)dt,

and therefore its estimator for right-censored data is defined as:

µ̂KM (τ) =

∫ τ

0
ŜKM (t)dt.

We will compare this estimator to the restricted mean survival estimators corresponding to each
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of the three naive estimation methods:

µ̂1(τ) =
1

n

n∑
i=1

Ti ∧ τ,

µ̂2(τ) =
1

n

n∑
i=1

∆i(Ti ∧ τ),

µ̂3(τ) =
1∑
j ∆j

n∑
i=1

∆i(Ti ∧ τ),

and to the optimal (unobserved) restricted mean survival estimator,

µ̂0(τ) =
1

n

n∑
i=1

T̃i ∧ τ ·

As before Monte-Carlo simulations were performed with the choice of τ = 6 and are presented
in Table 4. The results show that the Kaplan-Meier estimator has similar performance as the
optimal estimator (almost no bias at all) while naive estimators have a bias related to the
amount of censoring in the dataset. Note that even in the low censoring case, minimal bias are
respectively equal to −0.133 and −0.085 in the uniform and Weibull cases which emphasizes the
importance of using the Kaplan-Meier estimator even when only a few proportion of observations
are censored.

Table 4: Bias of the restricted mean estimators for the uniform and Weibull scenarios with 10% or
50% of censoring. True restricted mean equals 4.2 in the Uniform scenario and equals 4 in the Weibull
scenario.

10% of censoring 50% of censoring
ê0 ê1 ê2 ê3 êKM ê0 ê1 ê2 ê3 êKM

Uniform 0.001 -0.133 -0.569 -0.163 0.001 0.000 -0.710 -2.822 -1.443 0.001
Weibull 0.000 -0.218 -0.475 -0.085 0.000 0.000 -1.255 -2.312 -0.597 -0.001

6 Concluding remarks

The aim of the paper was to emphasize the need for specific statistical tools to perform estima-
tion in survival analysis. When introducing the topic, estimation techniques can be discussed
with students and through a didactic lesson the teacher can conduct the course in a gradual way
until the derivation of the Kaplan-Meier estimator. Classical statistical methods for censored
data can then be taught in the usual way, and they will be much easily understood after having
discussed the basic concepts.

In some studies it can be difficult to realise that the observations suffer from censoring.
Famous examples include the two studies on survival of left-handed people (see Altman and
Bland (2005)) where the researchers only looked at dead individuals. By ignoring censoring
effect, the original studies concluded that right-handed people live longer than left handed (9
years longer on average!), a result that has been refuted since then.

The present paper only considered nonparametric aspects of estimation. Confusion on cen-
sored data is also frequent when trying to implement regression models. A classical situation
is when the outcome is binary but can only be observed for individuals that had a complete
follow-up. As an example consider the recent study in Clausen et al. (2016) where researchers
aimed to assess the effect of mode of delivery in babies on the onset of type 1 diabetes before age
15. If all children had been followed for 15 years the outcome would have been binary (children
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can either have diabetes or not). However all children did not have the same follow-up duration
(mainly due to study end) and using regression methods such as logistic regression would result
in a large bias in the estimations. The correct method, which is the one conducted in the article,
is to implement a Cox model (see Cox (1972)) which directly models the hazard rate for time
to onset of diabetes and take into account right-censoring in the estimation method.

Appendix: study of the asymptotic bias of Ŝ3

The estimator Ŝ3(t) is a consistent estimator of P[T > t|∆ = 1] = P[T > t,∆ = 1]/P[∆ = 1].
The numerator was calculated in (1) and the denominator was obtained from (1) by taking the
limit as t tends to infinity. We have:

P[T > t|∆ = 1] =
S(t)−

∫∞
t G(u)dF (u)

1−
∫∞
0 G(u)dF (u)

·

The asymptotic bias can be studied by subtracting S(t) to the previous quantity, and direct
calculations give

P[T > t|∆ = 1]− S(t) =

∫ t
0 G(u)dF (u)− F (t)

∫∞
0 G(u)dF (u)

1−
∫∞
0 G(u)dF (u)

·

Notice then that the function on the right hand side of the equation equals 0 for t = 0 or t =∞.
Simple analysis of the derivative of that function shows that P[T > t|∆ = 1]−S(t) is decreasing
for t ∈ [0, t∗), reaches a minimum at t∗ and is increasing for t ∈ [t∗,∞), where t∗ is defined such
that G(t∗) =

∫∞
0 G(u)dF (u) = P[∆ = 0]. For continuous distribution functions, such a value of

t∗ always exists with the two degenerated cases corresponding to P[∆ = 0] = 0 (meaning there
are no censored observations) which implies that t∗ = 0 and P[∆ = 0] = 1 (all observations are
censored) which implies that t∗ =∞. This concludes that

P[T > t|∆ = 1]− S(t) ≤ 0,

and the equality holds true only for t = 0, t =∞, or for all t ≥ 0 in the case of no censoring.
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