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Abstract

In this article we suggest a new statistical approach considering survival heterogeneity as a

breakpoint model in an ordered sequence of time to event variables. The survival responses

need to be ordered according to a numerical covariate. Our estimation method will aim

at detecting heterogeneity that could arise through the ordering covariate. We formally

introduce our model as a constrained Hidden Markov Model (HMM) where the hidden

states are the unknown segmentation (breakpoint locations) and the observed states are

the survival responses. We derive an efficient Expectation-Maximization (EM) framework for

maximizing the likelihood of this model for a wide range of baseline hazard forms (parametrics

or nonparametric). The posterior distribution of the breakpoints is also derived and the

selection of the number of segments using penalized likelihood criterion is discussed. The

performance of our survival breakpoint model is finally illustrated on a diabetes dataset where

the observed survival times are ordered according to the calendar time of disease onset.
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1 Introduction

In survival analysis it is quite common that heterogeneity between patients results in

various survival response distributions. This heterogeneity can be controlled through

known covariates (such as date of birth, age at diagnosis, gender, treatment, co-exposure,

BMI, etc.) using regression-type models such as the Cox proportional hazard model1 and

by performing stratified analyses or by incorporating a random effect in a frailty model

(see among many other authors2–5). Other types of heterogeneous dataset arise when

the incidence rate changes over the calendar time in a cohort study and specific models

like age-period-cohort have been extensively studied to take into account this kind of

heterogeneity (see Yang and Lang6 for instance). While theses models have proved to

be most useful, it is however likely that unaccounted latent heterogeneity remains in the

survival signal. This might be due for example to an unknown interaction between a

treatment and some exposure, or to some unaccounted heterogeneity of the disease itself

(for example an unknown cancer sub-type). For instance, age at diagnosis might be

associated with a higher chance to receive a new treatment or BMI might be associated

with a specific exposure.

Fitting heterogeneous survival models such as frailty models or cure models (see for

instance7;8) is a challenging task which often requires specifying parametric incidence

rates in order to ensure identifiability. When considering nonparametric hazard rates the

task is even more challenging and usually requires additional constraints. Quoting Sy and

Taylor8 in the cure model context, “by leaving the conditional baseline survival function

arbitrary, a condition close to nonidentifiability can occur, which causes estimation

problems” and they further mention that this issue is overcome by requiring the

additional constraint that the conditional survival function is set to zero beyond the last

event time. In the frailty context, Rondeau et al.9 overcome the nonidentifiability issue

by using a smoothing approach : the authors consider spline functions for the estimation

of the baseline hazard and a penalized likelihood estimation method is implemented

in order to estimate the regression parameters while controlling the smoothness of the

baseline hazard.

In the present work, we suggest a new approach considering survival heterogeneity as

a breakpoint model in an ordered sequence of survival responses. The survival responses

might be ordered according to any numerical covariate (ties are possible) like age at

diagnosis, BMI, etc. The basic idea being that heterogeneity will be detected as soon as

it is associated with the chosen covariate. From a statistical point of view we consider

this situation as a change-point model where abrupt changes occur in terms of baseline
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hazard rates and/or in terms of proportional factors. In such a model, we aim at two

objectives: first we want to estimate the hazard rates and the proportional factors in

each homogenous region through a Cox model considering parametric baseline hazards

or a nonparametric baseline hazard. Secondly, we want to accurately provide the number

and location of the breakpoints. Recently a constrained Hidden Markov Model (HMM)

method was suggested in the context of breakpoint analysis10. This method allows

to perform a full change-point analysis in a segment-based model (one parameter by

segment) providing linear EM estimates of the parameter and a full specification of

the posterior distribution of change points. In this paper we adapt this method to

the context of survival analysis with hazard rate estimates, where the estimation is

performed through the EM algorithm11 to provide update of the estimates and the

posterior distribution at each iteration step.

In Andersen et al.12, the authors studied a dataset on nephropathy for diabetics

(introduced in Example I.3.11 of their book) using a multi-state model, where each

transition intensity model was adjusted with respect to the calendar time of disease

onset (see Table VII.2.1 page 520 of their book). The authors concluded that “it is seen

that all intensities decrease with t0 (the calendar year of onset of diabetes), indicating a

general medical improvement over time”. We will illustrate our method on this dataset,

where the event times will be ordered with respect to the calendar time of disease onset

and our model will aim to detect heterogeneity on the survival distribution of the patients

with respect to the calendar time of disease onset.

In Section 2.1, the Cox breakpoint model and the corresponding conditional likelihood

are presented. In Section 2.2, the EM algorithm is introduced as an iterated method to

perform estimation in this context. It is shown that the E step can be seen as a weighted

likelihood where the weights correspond to the posterior probability of each individual

to be in each segment given the data and the previous update of the model parameter. In

Section 3, computation of the weights is derived. In Section 4, maximisation of the log-

likelihood for a fixed weight is discussed. Three parametric baseline hazards (exponential,

Weibull or piecewise constant) and the nonparametric baseline are studied in our model

and their expressions are recalled in the Supporting Material. Section 5 gives a summary

of the implementation of the proposed algorithm along with some discussions on the

calibration of the algorithm parameters. A simulation study is presented in Section 6.

Section 7.1 discusses the ability of our BIC criterion to accurately find the correct number

of breakpoints in the data and a real data analysis on survival of diabetic patients is

studied in Section 8. Finally, Section 9 concludes this article with some general comments

on the proposed methods.
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2 Model and estimation procedure

2.1 The breakpoint model

Let T ∗ represent the survival time of interest associated with its counting process

N∗(t) = I(T ∗ ≤ t) and its at risk process Y ∗(t) = I(T ∗ ≥ t) for t ≥ 0. Let X represent

a p-dimensional covariate row vector. In practice, T ∗ might be censored by a random

variable C so that we observe (T = T ∗ ∧ C,∆ = I(T ∗ ≤ C),X). Introduce the observed

counting and at risk processes denoted respectively by N(t) = I(T ≤ t,∆ = 1) and

Y (t) = I(T ≥ t) and let τ be the endpoint of the study. The data consist of n independent

replications (Ti,∆i,Xi)i=1,...,n associated with their counting process Ni(t) and at risk

process Yi(t), for t ∈ [0, τ ].

The cohort effect is modelized through the latent random variable R and its n i.i.d.

replications R1, R2, . . . , Rn which represent an unobserved segment index associated to

each individual. We suppose that the population is composed of K segments such that

for i = 1, . . . , n, Ri ∈ {1, 2, . . . ,K}. Without loss of generality, we also assume that the

Ris are ordered. For example, if the population is a mixture of three subpopulations

such that we have n = 10 and two breakpoints occurring after positions 3 and 7 then

R1:10 = 1112222333.

The goal of this paper is to study a hazard Cox model stratified with respect to the

segment index. This model is defined in the following way:

E[dN∗(t)|Y ∗(t),X, R] = Y ∗(t)

K∑
k=1

λk(t) exp(Xβk)I(R = k)dt, (1)

where the λk represent unknown baseline hazard functions and the βk unknown

regression parameters associated to each segment index. Let Λk(t) =
∫ t
0 λk(s)ds

represents the cumulative baseline hazard function of the kth segment index. We denote

by θ = (Λ1, . . . ,ΛK ,β1, . . . ,βK) the model parameter we aim to estimate. Note that if

the Ris were observed and if β1 = · · · = βK , this model would reduce to the classical

stratified Cox model (see for instance Martinussen and Scheike13 page 190).

In order to make inference on the model parameter we will assume that the endpoint

τ is defined such that, for all t in [0, τ ], P(T > t) > 0. We will also suppose that the

censoring variable is independent of the event time conditionally on X and R. Under

this independent censoring assumption, our model defined by Equation (1) is still verified

if we replace the processes N∗(t) and Y ∗(t) by their observed counterpart, namely N(t)

and Y (t).
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The contribution of the ith individual to the likelihood conditionally on its

(unobserved) segment index being equal to k is represented by

ei(k;θ) = P(Ti,∆i,Xi|Ri = k;θ).

From standard arguments on likelihood constructions in the context of survival analysis

see for instance12, we have under independent and non informative censoring:

log ei(k;θ) =

∫ τ

0

{
log
(
λk(t)

)
+Xiβk

}
dNi(t)−

∫ τ

0
Yi(t)λk(t) exp(Xiβk)dt, (2)

where the equality holds true up to a constant that does not depend on the model

parameter θ. Since the segment indexes are not observed, the likelihood of our model

cannot be directly computed. To overcome this problem, an Expectation-Maximization

(EM) algorithm procedure is developed in the next section.

2.2 The EM algorithm

By considering the segmentation R1:n = R1, . . . , Rn as a latent variable, the EM-

algorithm11 consists of performing alternatively until convergence the following two-

steps.

Expectation Step: compute the conditional expected log-likelihood

Q(θ|θold) =

∫
R1:n

P(R1:n|data;θold) logP(R1:n, data;θ)dR1:n

where θold denote the previous value of the parameter and data =

(T1:n,∆1:n,X1:n).

Maximization Step: update parameter with

θ̂ = arg max
θ

Q(θ|θold). (3)

Assuming that the prior segmentation distribution P(R1:n;θ) does not depend on θ,

we easily get (for details see the Supporting Material, Section 1):

Q(θ|θold) =

n∑
i=1

K∑
k=1

wi(k;θold) log ei(k;θ), (4)
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where for any i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} and θ we define:

wi(k;θ) = P(Ri = k|data;θ).

Our EM algorithm hence alternates two steps. First, the E-Step which consists of

computing the weights wi(k;θold). This is done in Section 3 using a constrained Hidden

Markov Model (HMM). Then for the M-Step, Equation (3) needs to be solved. This is

done in Section 4 using the weighted log-likelihood expression given by Equation (4).

3 Computation of the posterior segment distribution

As suggested in Luong et al.10, the posterior segmentation distribution can be obtained

using the constrained HMM. For completeness, we give all the necessary information to

implement this constrained HMM. The basic idea consists of modeling the segmentation

variable R1:n using a Markov chain over {1, . . . ,K,K + 1} where K + 1 is an absorbing

(technical junk) state. The segmentation always start with R1 = 1 and its transition

matrix P(Ri|Ri−1) is given by the following matrix (in the particular case where K = 4):
1− ηi(1) ηi(1) 0 0 0

0 1− ηi(2) ηi(2) 0 0

0 0 1− ηi(3) ηi(3) 0

0 0 0 1− ηi(4) ηi(4)

0 0 0 0 1


where ηi(k) = P(Ri = k + 1|Ri−1 = k) is a prior distribution. In order to obtain a valid

segmentation of n points into K segments, one must add the constraint that {Rn = K},
this is why the model can be seen as a constrained HMM. A very natural choice for

the prior distribution is to use ηi(k) = constant ∈ [0, 1] which leads to a uniform prior

distribution over the space of segmentations. But more sophisticated prior might be use:

priors forbidding change-points at certain locations (this might for example be useful

for dealing with ties in data ordering), priors incorporating knowledge on most likely

breakpoint locations, or even using posterior segmentation distribution from a previous

study as a prior.

Since the constrained-HMM model considered here is very close to a classical HMM,

it is not surprising that inference in our model is very similar to the Baum-Welch

algorithm14 which combines recursive computation of the so-called forward-backward

quantities with the EM algorithm11. We hence follow here a very similar path.
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For any given parameter θ, we introduce the following forward and backward

quantities: Fi(k;θ) = P(data1:i, Ri = k;θ) and Bi(k;θ) = P(data(i+1):n, Rn = K|Ri =

k;θ) for all i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}. These quantities can be computed

recursively using the following recursions:

Fi(k;θ) = Fi−1(k − 1;θ)ηi(k − 1)ei(k;θ) + Fi−1(k;θ)(1− ηi(k))ei(k;θ) (5)

Bi−1(k;θ) = (1− ηi(k))ei(k;θ)Bi(k;θ) + ηi(k)ei(k + 1;θ)Bi(k + 1;θ) (6)

and we can derive from them posterior distributions of interest:

P(Ri = k|data;θ) = wi(k;θ) ∝ Fi(k;θ)Bi(k;θ) (7)

P(BPk = i|data;θ) ∝ Fi(k;θ)ηi+1(k)ei+1(k + 1;θ)Bi+1(k + 1;θ) (8)

where {BPk = i} = {Ri = k,Ri+1 = k + 1}. It is hence clear that Equation (7) allows to

compute the marginal weights used in the EM algorithm (Section 2.2) while Equation (8)

gives the marginal distribution of the kth breakpoint. Note that the full posterior

segmentation distribution can be proved to be an heterogeneous Markov chain which

transition can be derived immediatelty from Equations (7) and (8), see Luong et al.10

for more details.

Let us finally point out that the likelihood can also be derived from the forward-

backward quantities and for any i ∈ {1, . . . , n} as:

P(data|θ) =

∑
R1:n

P(data, R1:n, Rn = K|θ)∑
R1:n

P(R1:n, Rn = K|θ)
=

∑K
k=1 Fi(k;θ)Bi(k;θ)∑K
k=1 F

0
i (k)B0

i (k)
(9)

where F 0 and B0 are obtained through recursions (5) and (6) by replacing all ei(k;θ)

by 1:

F 0
i (k) = F 0

i−1(k − 1)ηi(k − 1) + F 0
i−1(k)(1− ηi(k))

B0
i−1(k) = (1− ηi(k))B0

i (k) + ηi(k)B0
i (k + 1).

These quantities depend only on η, n and K, thus they do not need to be updated during

the EM algorithm.

In the (important) particular case where there is a uniform prior on the segmentation,

one can use the constant ηi(k) = η. Simple combinatorics hence lead to
∑

k F
0
i (k)B0

i (k) =

(1− η)n−KηK−1
(
n−1
K−1

)
. Recursion can even be performed much faster by replacing all η
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and 1− η by 1 in all recursions. In this case, the probability distribution is defined up

to a normalisation factor which is simply the binomial coefficient
(
n−1
K−1

)
.

4 Log-likelihood maximization with known weights

Suppose you have at hand some preliminary estimator θold. In Section 3, we showed how

to use this quantity to estimate the marginal posterior probability wi(k;θold) of position

i to be in the kth segment given the data and under θold. From the expression of the

ei(k,θ) derived in (2), Equation (3) can be solved by maximizing a simple weighted

log-likelihood. When the weights are all equal to 1, statistical inference has already

been studied, either in a fully parametric case if one assumes a parametric form for the

baseline hazard rate (see for instance Kalbfleisch and Prentice15) or in a semiparametric

way if the baseline hazard rate is left unspecified which corresponds to the well known

Cox model. In the latter case, a weighted log-likelihood has also been briefly studied in

Therneau and Grambsch4, pages 161-168. But in both parametric and semiparametric

cases, our weighted log-likelihood estimation procedure is very similar to the standard

estimation techniques used in the absence of weights.

In the next section, we discuss the implementation of our estimator for different choices

for the baseline hazard rate in a Cox model. We propose to use either a parametric

baseline among the exponential, the Weibull and the piecewise constant hazard or to use

a nonparametric baseline, that is to let the baseline hazard unspecified. The expression of

the different families for the baseline hazard are all recalled in the Supporting Material.

The piecewise constant hazard model is very useful when one does not know the shape

of the baseline hazard a priori. However it requires to choose a pre specified number of

cutpoints. The nonparametric case is the most flexible model since it does not require

any particular form for the baseline hazard. In the classical Cox model, the Cox’s partial

likelihood provides efficient estimation of the regression parameters and estimation of

the cumulative baseline is performed through the Breslow estimator16. However, in

our context, classical estimation methods will not lead to consistent estimators due

to numerical instabilities. In order to consistently estimate the model parameter and

the posterior segment distribution with a nonparametric baseline, a smooth estimator

of the baseline is required. This is introduced in Section 5.2. Choice of the number of

cutpoints in the piecewise constant hazard model and choice of the bandwidth in the

nonparametric case are discussed in Section 5.3.
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5 Practical implementation

5.1 Parametric baseline hazards

The parametric case is straightforward: the final estimators are obtained by alternating

computation of the estimates through Equation (3) and computation of the weights

through the posterior segment distribution calculated in Section 3.

The algorithm of our estimation procedure is as follows. First suppose you have at

your disposal an initial weight function wi(k;θold).

Step 1. Compute θ̂ = arg maxθ Q(θ|θold) from Equation (3). In the exponential or Weibull

models, this can be done via the survreg function in R (see Section 2 of the

Supporting Material) and in the piecewise constant hazard model, this can be

done via the glm function in R (see Section 3 of the Supporting Material)

Step 2. Compute the new weights wi(k; θ̂) using Equation (7) in Section 3.

Step 3. Let θold = θ̂ and return to Step 1.

5.2 Nonparametric baseline hazard

The nonparametric case requires one supplementary step. After the first step, smoothed

versions of the baseline hazard and cumulative baseline hazard estimators need to be

derived. The weighted log-likelihood and the weights are then computed using these

smoothed estimators. We propose in this work to use kernel type estimators but our

method could be extended to any type of smoothing estimators such as wavelets, splines,

k-nearest neighbor estimators, projection estimators etc.

Let K be a kernel such that
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du <∞ and∫

K2(u)du <∞. Let h be a bandwidth satisfying h→ 0 and nh→∞ as n tends to

infinity. We note Λ̃k the estimator of Λk obtained from the weighted Cox partial

likelihood (see the Supporting Material for an explicit expression of this estimator) and

we introduce smoothed estimators of λk:

λ̂k(t) =
1

h

n∑
i=1

∫
K
(
u− t
h

)
dΛ̃k(u) and Λ̂k(t) =

∫ t

0
λ̂k(s)ds. (10)

Let θ̂ = (Λ̂1, . . . , Λ̂K , β̂1, . . . , β̂K). This new estimator is now used to estimate ei(k;θ)

and then to obtain estimators of the weights. From Equation (2) we have:

log
(
ei(k; θ̂)

)
= ∆i

(
log
(
λ̂k(Ti)

)
+Xiβ̂k

)
− Λ̂k(Ti) exp(Xiβ̂k). (11)
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Note that the weighted likelihood Q(θ̂|θold) obtained from these ei(k; θ̂) does not reduce

to a partial likelihood due to the use of smoothed hazard and cumulative hazard

estimators. However this is not an important matter since our algorithm does not require

the maximization of this likelihood: Equation (11) is only needed for the computation

of the new weights from Equation (7) in Section 3 while the optimization step only

involves the Cox partial likelihood and is easily performed through the Newton-Raphson

algorithm.

The final algorithm of our estimation procedure is as follows. First suppose you have

at your disposal an initial weight function wi(k;θold).

Step 1. Compute θ̃ using the Newton-Raphson algorithm to maximize the weighted Cox

partial likelihood (see the Supporting Material for details about the Newton-

Raphson algorithm). This can be done via the coxph function in R with a weight

option.

Step 2. Smooth the λ̃k and Λ̃k using Equation (10). This gives θ̂.

Step 3. Compute log
(
ei(k; θ̂)

)
as in Equation (11) and get the new weights wi(k; θ̂) from

Equation (7) in Section 3.

Step 4. Let θold = θ̂ and return to Step 1.

5.3 Choice of the parameters and stopping rule to find the correct model

These algorithms need to be initialized by either choosing initial model parameters

or by directly choosing initial weights w. We propose the following ad-hoc method to

initialize the weights for a sample of size n and K segments. First divide the sample in

K segments and for any individual i in segment k, choose wi(k,θold) = w with w a high

number between 0 and 1 (for instance, take w = 0.7). For any individual j that is not in

segment k, choose wj(k,θold) = 1− w.

In all models, the Newton-Raphson algorithm is initialized by taking the null vector

for β̂
(0)

k . Step 2 in the parametric models and step 3 in the Cox model are performed

using the R package postCP developed by Luong et al.10.

The exponential and Weibull baseline hazard models only require the initialization

of either the model parameters or the weights. On the opposite, the piecewise constant

baseline hazard model and the nonparametric baseline model require an extra parameter

to be chosen. In both models, the estimation procedure is not very sensitive to the choice

of this parameter, especially in terms of breakpoints detection. In particular, the number

of cut points in the piecewise constant hazard is set by default to 3 and as shown in the

simulation section, this leads to very performant breakpoints selection. Increasing the
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number of cut points does usually not make the breakpoints detection more accurate.

These 3 breakpoints can be chosen for instance from the data as the quantiles of the

event times of order 0.25, 0.5 and 0.75 respectively. The same phenomena happens for

the choice of the bandwidth in the nonparametric model: detecting the correct number of

breakpoints is not much affected by the choice of the bandwidth. However, it might still

be of interest to find an optimal bandwidth if one wants to give a precise estimation of the

baseline hazard. This problem is classical for density estimation and has been studied for

nonparametric estimation of baseline hazards by Andersen et al.12. Equations (4.2.25)

and (4.2.26) of their book suggest that a bandwidth of order n−1/5 would give the

best compromise between bias and variance trade-off in the estimation of the baseline

hazard. In particular asymptotic normality of order (nh)1/2 would be achieved with such

a bandwidth as expressed by their theorem IV.2.4. More discussions about how to choose

the bandwidth from the data can be found in Andersen et al.12, see in particular their

Examples IV.2.3, IV.2.4 and IV.2.5. Since the interest in the choice of the bandwidth is

limited in our context we will not pursue this discussion here but as a rule of thumb we

recommend the user to choose h = n−1/5 in real data situations.

Another important issue is to find the correct number of breakpoints in the dataset.

A simple solution consists to start with a model with one breakpoint and increment the

number of breakpoints one by one. As presented in the real data analysis for example

(see Section 8) a visual inspection of the plots of the maximum a posteriori of the

breakpoints can help to find the right model. However, the conclusion from theses plots

can be subjective and it is therefore important to propose a numerical indicator that

helps discriminating between different models. We propose the following BIC criterion

designed to make a tradeoff between information provided by the data on a model and

the complexity of the model:

BIC(d) = −2 logP(data|θ̂) + d log(n)

where the likelihood P(data|θ̂) can be computed using Equation (9), and d corresponds

to the dimension of the model. The value of d is different for every model, it corresponds

to the total number of parameters that need to be estimated. For the exponential

baseline, d = (p+ 1)K, for the Weibull baseline, d = (p+ 2)K and for the piecewise

constant hazard baseline, d = (p+ L)K. No such indicator can be derived for the

nonparametric baseline hazard since in that case the number of parameters to be

estimated equals infinity. This BIC criterion is used in Section 8 for the exponential
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baseline to discriminate between different models and find the correct number of

breakpoints.

6 Simulated data

In this section we evaluate the performance of our estimation technique through

numerical experiments. We consider a Cox model as defined by Equation (1), with K = 3

segments and a binary covariate X distributed as a Bernoulli variable with parameter

equal to 0.5. We consider different scenarios corresponding to different baseline hazards

and different regression parameters:

Scenario 1. Exponential baselines, λ1(t) = 1, λ2(t) = 0.5, λ3(t) = 0.7 and β1 = 1.5, β2 = −0.5,

β3 = −0.5.

Scenario 2. Weibull baselines, λ1(t) = 5t4, λ2(t) = 2t, λ3(t) = 2t and β1 = 1.5, β2 = −1, β3 =

−5.

Scenario 3. Piecewise constant baselines,

λ1(t) = 0.8 I(0 < t ≤ 1) + 1.2 I(1 < t ≤ 3) + 1.6 I(3 < t),

λ2(t) = 1.2 I(0 < t ≤ 4) + 1.6 I(4 < t ≤ 6) + 2 I(6 < t),

λ3(t) = 1.6 I(0 < t ≤ 5) + 2 I(5 < t ≤ 7) + 2.4 I(7 < t),

and β1 = 1.5, β2 = −0.5, β3 = −1.5.

Scenario 4. Gompertz baselines, λ1(t) = e5t, λ2(t) = e2t, λ3(t) = e2t and β1 = 1.5, β2 = −0.5,

β3 = −1.5.

In all four scenarios, the sample size n equals 3 000, and the data were simulated

such that R1 = · · · = R1000 = 1, R1001 = · · · = R2000 = 2 and R2001 = · · · = R3000 = 3.

Each scenario was calibrated such that the change in the hazard distribution between

Segments 1 and 2 was more important than the difference in the hazard distribution

between Segments 2 and 3. This is illustrated by Figure 1 which provides the plots of

the conditional hazard rates in each scenario. The censoring variable was chosen as a

uniform distribution such that approximately 50% of the observations were censored

in each scenario. Exact parameter values of the censoring distribution can be found

in the Supporting Material. For the piecewise constant hazard model estimator, as

recommended in Section 5.3, the cuts positions were chosen from the empirical quantiles

of order 0.25, 0.5 and 0.75 of the data. This lead us to take the approximate values 0.2, 0.5

and 1.1 for Scenario 1, 0.4, 0.7, 1 for Scenario 2, 0.15, 0.35 and 0.5 for Scenario 3 and 0.1,
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0.2 and 0.4 for Scenario 4. For the nonparametric baseline hazard model estimator, as

recommended in Section 5.3, the bandwidth was chosen equals to 3000−1/5 ≈ 0.2 in all

scenarios. Finally we ran 1 000 replications of each of these scenarios and the results were

reported in Table 1. Following formula (8) the maximum a posteriori of a breakpoint was

computed on each Monte-Carlo sample and the mean location and mean value of that

maximum were reported in Table 1. Empirical confidence intervals were also computed

for this maximum a posteriori of breakpoint.

In all scenarios, detection of the first breakpoint is usually very accurate where in

many cases the average breakpoint location is exactly equal to the true breakpoint

location, 1 000. The second breakpoint is more difficult to detect as shown by wider

confidence intervals even though the average breakpoint location is usually close to

the true breakpoint location, 2 000. The average value of the marginal probability

of breakpoint detections also illustrate the uncertainty about the second breakpoint

location: the probability for the first breakpoint location is in all cases much higher than

for the second breakpoint location.

The most problematic breakpoint to find corresponds to the breakpoint from segment

2 to 3 under Scenario 1 and as a matter of fact none of the proposed methods manage

to provide an accurate 95% confidence interval. In this scenario, for every estimation

methods there was a probability of approximately 1 over 1 000 that the algorithm fails

to find the second breakpoints leading to an error in the program.

It is interesting to notice that on the overall the true hazard distribution of the data

does not seem to play any role in the detection power of our estimation methods as long

as the change in the hazard distribution in two segments is large enough. For instance,

in Scenario 4, which involves a simulation setup that does not correspond to any of

the parametric baseline distributions proposed in the different estimation methods, all

estimators find very accurate breakpoint locations with very narrow confidence intervals.

The estimation performance of the regression parameter does not seem to be much

affected by the data simulation setup neither, since the Weibull, piecewise constant and

nonparametric baseline estimators show little difference in their estimation performance

from one scenario to another. One exception is the exponential baseline estimator which

seems to behave poorly in Scenarios 2 and 4 when looking at the regression parameter

estimates and the confidence intervals for the second breakpoint compared to the other

estimators.

Globally, all estimators are performant both in breakpoint detections and parameters

estimation as long as the change in the hazard distribution is big enough from one

segment to another. In that case, the nonparametric baseline estimator seems to give

Prepared using sagej.cls



14 Journal Title XX(X)

the biggest value of the probability of the breakpoint distribution. When only a slight

change occurs between the hazard distribution of two segments, all the proposed methods

are less precise and the exponential baseline estimator seems to be the less performant

of all baseline estimators.

More simulation studies which are not reported here have been carried out. When the

change in distribution between two segments increases, the probability of the marginal

breakpoint distribution increases accordingly and can be almost equal to 1 in some

situations. Scenarios with a mixture of different parametric survival distributions in

each segment have also been investigated. Finally we also considered scenarios where

λ1, λ2, λ3 and the corresponding β1, β2, β3 were permuted. All these simulations lead to

similar behaviour of our estimators and are therefore omitted.

7 Robustness study of the estimation method

7.1 Performance of the BIC criterion

In this section we evaluate how performant the BIC criterion is to choose the correct

number of breakpoints. We propose two scenarios: a null case where there is no

breakpoint in the population and an other case where there are two breakpoints. In

order to make the comparison more realistic we simulated the data under the null case by

mimicking the French national breast cancer incidence17. The two breakpoints simulation

was obtained by adding a small noise to this null case. For the null case we simulated a

sample of size 15, 000 and for the second scenario we simulated a sample of size 35, 000

with breakpoints at positions 15, 000 and 25, 000. The simulation was easily performed

from a piecewise constant hazard model by choosing cuts of 5 years length, starting from

age 15 until age 95. The hazard curves are represented by Figure 2. All individuals were

censored after age 90 which resulted in approximately 16% of observed data.

We also studied the AIC criterion whose definition is similar to the BIC criterion but

log(n) is replaced by the constant 2. We computed these two indicators for a number of

breakpoints ranging from K = 1 to K = 6 and computed the proportion of selected

models for 1, 000 replications in each scenario using either the exponential baseline

estimator or the piecewise constant hazard baseline estimator. The cuts for the piecewise

constant hazard baseline estimator where found by taking the quantiles of order 0.25,

0.5 and 0.75 as described in Section 5.3. Table 2 presents the results for the null case

and the two breakpoints model.

Under the null case it is interesting to note that the BIC criterion will never find a

breakpoint when there are none in the population. On the contrary, using the piecewise
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constant hazard baseline estimator, the AIC criterion will have approximately 8% of

chances to choose a breakpoint model when there are none. Also, in the two breakpoints

scenario the BIC criterion gives clearly a much accurate prevision of the number of

breakpoints compared to the AIC criterion. For the BIC criterion, the exponential

baseline estimator seems to outperform the piecewise constant hazard baseline estimator

since this estimator gives 98.7% chances of finding the correct model as opposed to 92.9%

for the piecewise constant hazard baseline estimator.

7.2 Performance of the method for smooth change of the hazard rate

In this section we investigate how the method would react to a dataset where the change

of the hazard distribution occurs smoothly over the ordered individuals. For simplicity we

take again as a reference the hazard from the French national breast cancer incidence17,

displayed at the left panel of Figure 2. We denote by λ0 this hazard and, with a slight

abuse of notation, we model the individual incidence of some disease as λi such that

λi(t) = λ1(t)ϕi + λ0(t)(1− ϕi), i = 1, . . . , n,

where ϕi represents an individual susceptibility and λ1(t) = RH× λ0(t) is proportional

to λ0 for some constant RH. This basic model could represent the individual incidence

of some cancer (modelled by λi) as a mixture of incidence for individuals infected

by a virus (λ1) and non infected individuals (λ0). For example, this could model the

cervical cancer and the human papillomavirus18. In this model we denote by ϕi the

probability of infection of individual i. We consider that non-vaccinated individuals

have a probability ϕi = 0.10 to be infected and that vaccinated individuals cannot be

infected. Since new vaccines are usually progressively introduced over calendar time,

we assume that ϕi = 0.10(1− pi) where pi represents the probability for individual i of

being vaccinated. Assuming that individuals are ordered with respect to their date of

birth, pi is modelled as an increasing function (with respect to i) starting from a date of

birth a and will reach 1 at a date of birth b. In the following, for n = 1, 000 individuals,

dates of birth are simulated as uniform continuous years, ranging from 1930 to 1980

and we choose a = 1950, b = 1970 such that pi = 0 outside the interval [a, b], starts

at 0 for individuals born in 1950 and increase linearly until year of birth equals 1970

where pi = 1. This will induce a linear smooth change for λi with respect to the ordered

individuals where the slope of pi, equal to 1/(b− a) = 0.05, is used to represent this slow

linear change. First individuals (born before 1950) and last individuals (born after 1970)

of the dataset represent the two extreme situations in terms of hazard rates, which are
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respectively equal to 0.1λ1(t) + 0.9λ0(t) and λ0(t). Other individuals will have a hazard

rate corresponding to any situation between these two extreme scenarios. For instance,

individuals born in the middle of the segment [a, b] (in 1960) for whom pi = 0.5 will have

a hazard rate equal to 0.05λ1(t) + 0.95λ0(t). As before, all individuals were censored

after age 90 which resulted in approximately 16% of observed data.

Monte-Carlo simulations with 1, 000 replications were then conducted to investigate

how performant is our method to detect a change in the distribution of the hazard

rate over the ordered individuals, using the BIC criterion with exponential baseline. We

considered different scenarios with different values of the relative hazards

RH between λ1 and λ0: RH = 5, RH = 10 and RH = 50 (see Table 3). It is seen that

the number of breakpoints chosen from our estimation method grows with respect to

the value of RH. For RH = 5, the 0 breakpoints model was chosen in 88.2% of the cases,

for RH = 10 the 1 breakpoint model was chosen in 75.6% of the cases and for RH = 50

the 2 breakpoints model was chosen in 69.2% of the cases. A posteriori breakpoints

distributions are also shown in the Supporting Material, Section 6, for a single sample

in the RH = 10 and RH = 50 scenarios. More generally it was observed that under this

smooth change of hazard simulation setting, a posteriori distributions of breakpoints

tend to be more widely spread than under a change-point simulation setting, such as in

Section 6.

More simulation scenarios have been carried out (not shown here). It seems that the

number of breakpoints found by the method grows accordingly to the size of the sample

size: for instance, for n = 400 and RH = 50 the method chooses most of the time the 1

breakpoint model and for n = 50, 000 and RH = 10 it chooses the 2 breakpoints model

most of the time. On the opposite, when a gets closer to 1930 and b gets closer to

1980, our method tends to choose fewer number of breakpoints. Finally, when a and

b get closer to each other, which means that the simulation model get closer to our

change-point model, our method tends to choose the one breakpoint model.

8 Survival analysis of diabetic patients at the Steno memorial hospital

In this section we illustrate our method on a dataset on survival of diabetics patients at

the Steno memorial hospital. The data are described in great details in Example I.3.11

in Andersen et al.12 and were originally studied through a illness-death model where

the illness state corresponded to the diabetic nephropathy status of the patients. Here,

we will only focus our interest on the survival of the patients, that is the variable of

interest is the time from diagnosis of diabetes of a patient until death. The data were
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collected between 1933 and 1981 and patients were included in the study if the diagnosis

of diabetes mellitus was established before age 31 years and between 1933 and 1972. A

total of 2 709 patients were followed from the first contact with the hospital until death,

emigration or the 31st of December 1984. On these 2 709 patients 707 (26%) deaths were

observed and the other 2 002 (74%) patients were considered right censored. Since most of

the patients did not contact the hospital directly after the diagnosis of diabetes, patients

in this dataset are also left truncated. This needs to be taken into account because it

means that individuals have a delayed entry into the study and will be observed only

if they did not die before attending the Steno hospital. Without appropriate methods

to deal with left truncation our estimation techniques will tend to overestimate the

survival of diabetics patients. Gender (coded as 0 for women and 1 for men) and the

year of birth were recorded for every patients. The dataset is composed of approximately

56% of male and 44% of female. The years of birth range from 1903 to 1971 and the

calendar year of onset of diabetes range from 1933 to 1972. Our aim was to determine

if there was any change in the hazard distribution according to the calendar year of

onset of diabetes when adjusting by gender. The marginal survival curves and parameter

estimates in a Cox model with exponential baseline hazard were also computed. Finally

a bootstrap procedure was implemented to provide valid confidence intervals that take

into account all the variability in the estimation procedure coming from the location of

the breakpoints, which is unknown and from the parameter estimates.

To accommodate our method for left truncation the individual at risk process Yi(t)

needs to be replaced by Yi(t) = I(Li ≤ t ≤ Ti) where Li represents the left truncation

variable for individual i. This will affect the value of the emission probability ei(k;θ) (see

Equation (2)) which in turn will affect the value of the a posteriori segment distribution

wi(k;θ) and the value of the weighted log likelihood Q(θ|θold). The parameters are

estimated by maximizing the log likelihood in Equation (3) as before. For example, in

the exponential model, the logarithm of the emission probability is equal to:

log ei(k;θ) = ∆i (− log(λk) +Xiβk)−
(
Ti − Li
λk

)
exp (Xiβk) .

Since only the year of diabetes onset (and not the exact date) it means that a

breakpoint can only occur when changing from one year to another. To take this into

account we first ordered all individuals with respect to their calendar year of diabetes

onset and the computation of the posterior distribution was constrained through the

priors ηi(k), defined in Section 3, such that ηi(k) = 0 for any k if individuals i and

i+ 1 were diagnosed diabetics the same year. Other priors were set to 0.5. Since 0 is
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an absorbing state this ensured us to have change-points only for a new diabetes onset

year.

Based on the results of Section 7.1 we decided to use the exponential baseline model

to perform the estimation of the model parameters and to use the BIC criterion to find

the correct number of breakpoints for a number of possible breakpoints ranging from

zero to four.

The maximum a posteriori of the breakpoints have been computed in Figure 3. For

example, from the model with only one breakpoint it seems that the survival of diabetics

patients was different for individuals born before the year 1948 than for individuals

born after 1947 with a probability of having a breakpoint equal to 93%. For the two

breakpoints model the probabilities a posteriori are also very sharp, with a probability

of having a breakpoint at year 1948 equal to 77% and a second breakpoint at year

1962 equal to 93%. For the three breakpoint models the probability a posteriori start to

get slightly more widespread. The breakpoints occur in 1946, 1957 and 1962 and their

probabilities a posteriori are equal respectively to 81%, 32% and 63%. Finally, in the four

breakpoints model, the probabilities a posteriori of the breakpoints get very wide. They

occur in 1944, 1948, 1958 and 1969 with probabilities equal respectively to 58%, 58%,

62% and 99%. From these plots we would tend to choose the two breakpoints model as

the computed probabilities a posteriori are still very sharp compared to the three and

four breakpoints model. This intuition is confirmed by the BIC criterion (see Table 4)

which clearly indicates that the two breakpoints model gives the best fit to the data

compared to all the other models.

In Table 4, parameter estimates for the Cox model with exponential baseline have

also been computed with gender as a covariate. For the two breakpoint models, we also

derived confidence intervals for the parameter estimates using a bootstrap procedure.

We drew 200 bootstrap samples and for each sample, new breakpoint locations along

with the baseline values and regression parameters of each segment were computed.

As a consequence, this procedure provides valid confidence intervals that take into

account both the uncertainties into the breakpoint locations and into the parameter

estimates. The baseline values are slightly decreasing with respect to the calendar

year of diabetes onset in the sense that men and women diagnosed at a latter time

have a smaller hazard of death than individuals diagnosed at a latter year. Their

values along with their 95% confidence intervals are respectively equal to 0.0226

[0.0198; 0.0273], 0.0082 [0.0066; 0.0123] and 0.0028 [0.0014; 0.0048] on the respective

segments 1933− 1947, 1948− 1961, 1962− 1972. Looking at the effect of gender we see

that this effect is positively associated to the hazard on the first two segments (so from

Prepared using sagej.cls



Bouaziz O. and Nuel G. 19

1933 until 1961) while its effect is no longer significant on the last segment. For better

interpretation, we give here the hazard ratios between men and women (instead of the

regression parameters as presented in Table 4). On the respective segments 1933− 1947,

1948− 1961, 1962− 1972, the hazard ratios for gender along with their 95% confidence

intervals are respectively equal to 1.2916 [1.0619; 1.5453], 1.5970 [1.1185; 2.0865] and

1.4426 [0.9046; 3.3970].

Finally, nonparametric survival estimates have been computed using a weighted

Kaplan-Meier estimator in Figure 4. The curves show a clear increase in the survival of

patients according to the calendar year of diabetes onset. Patients diagnosed at a latter

year have a greater survival than patients born at an earlier year. For example, in the two

breakpoints model, the survival 30 years after diagnoses of diabetes is equal to 51.4%,

73.8%, and 92% for the respective diabetes of onset years 1933− 1947, 1948− 1961 and

1962− 1972. Note that, using the bootstrap procedure as previously, one can also derive

pointwise confidence intervals for these survival curves (not shown here).

The dataset has also been studied for the exponential model without adjusting by

gender. The same breakpoints were found using the BIC criterion and the hazard and

survival estimates were nearly identical.

It should be noted that even though our breakpoint approach works on this dataset,

the results do not support the hypothesis of an abrupt change of the hazard of death

for diabetic patients and plots such as the ones in Figure 3 should be interpreted with

caution. As a matter of fact, it was seen in Section 7.2 that in case of a slow change

of the hazard over the ordered individuals, our method would be likely to detect a

breakpoint with such a large dataset. It might then be plausible that the observed change

of the hazard occurs smoothly between the two breakpoints dates, 1948 and 1962. In

the Supporting Material, as a different approach, a spline estimator was implemented

on this dataset in a nonparametric setting. This model assumes a different hazard for

every year of diabetes onset and every year since diabetes diagnosis. The estimator is

then smoothed using penalized splines. The purpose of this study was to illustrate how

more classical approaches using smoothing methods would perform on such a dataset.

As a result, it is seen that this smoothing spline approach gives a complex representation

of the hazard rate with respect to time and calendar year of diabetes diagnosis but it

is difficult to interpret in a concise way. Also, the breakpoints cannot be found from

such a method. Surprisingly, the hazard rate estimations seem to be far off the values

one would obtain on subsamples of individuals from a given range of diabetes diagnosis

years. On the other hand, our breakpoint approach gives a parsimonious representation

of the evolution of the hazard rate with respect to the calendar year of onset of diabetes
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and accurate estimations of survival quantities along with confidence intervals. It also

detects at which year the hazard has changed and provides the a posteriori distribution

of the breakpoints. We refer the reader to Section 7 of the Supporting Material for more

details about the smoothing approach. Implementation of our breakpoint model using a

piecewise constant hazard baseline can also been found in that section of the Supporting

Material.

9 Discussion

In this article we introduced a new breakpoint model to detect heterogeneity in an

ordered set of survival responses. In this model we suppose that abrupt changes can

occur in the survival distribution of the event time. More specifically after specifying the

number of segments, either the baseline hazard rates or the regression parameters are

allowed to change in the different segments. Estimation in such a model is performed

by an EM algorithm with use of constrained Hidden Markov Model (HMM) method as

recently suggested by Luong et al.10. The method proposes different specifications of

the baseline and as shown by the simulation study, all different models provide both

accurate estimates and accurate breakpoint locations. Interestingly, one can also obtain

valid confidence intervals for quantities of interest such as the regression parameters

or survival curves by taking into account both uncertainties in the location of the

breakpoints and in the model parameters. This was illustrated on the Steno memorial

hospital dataset through a bootstrap procedure. On this dataset the method was also

shown to adapt to more realistic problematics such as left truncation. Taking into account

ex-aequo individuals when ordered with respect to the calendar year of diabetes onset

could also be achieved by correctly specifying the prior transition matrix. Clearly, the

methods developed here could be readily extended to a more complex setting such as

handling time dependent covariates or applying the method to recurrent events. Also,

the methodology should be directly applicable to other survival models such as the

Accelerated Failure Time Model15;19 or the Aalen model20;21.

Strictly speaking our model only consider that abrupt changes may occur in terms

of the survival distribution. This strong assumption clearly does not account for more

continuous changes which is a classical drawback of breakpoint models. Nevertheless,

slow changes in the hazard distribution can still be detected from our method: this will

usually result into widely spread posterior probability distributions of the breakpoints

somewhere in the interval of distribution change. As a result, such a model needs to be

interpreted with caution with biological data where changes in the survival distribution
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is likely to occur continuously over time. With such data, one should not believe too

strongly in the biological justification of abrupt changes of the hazard rate but the

interest of the method still lies in the parsimonious representation of the hazard function

and the easily interpretable results derived from the segmentation of the data.

As a measure of the fit of the breakpoint models to the data, a BIC criterion was

derived for the parametric baseline models. This criterion turned out to be a very

powerful tool since as shown in Section 7.1, it seems to be very accurate to detect the

correct number of breakpoints in a dataset. However note that no BIC criterion could

be derived for the nonparametric baseline case. More generally it would be interesting

to propose some kind of sequential testing procedure in order to find the number of

breakpoints. In particular this will allow us to control the percentage of false discovery

rate, that is the probability that more breakpoints than necessary are found in the

dataset. This appears to be a complex problem and is left to future research work.
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Figure 1. Conditional hazard rates in simulated data for Scenarios 1 to 4 from top to bottom. Solid line:
hazard in segment 1. Dash line: hazard rate in Segment 2. Dot line: hazard rate in Segment 3.
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Table 1. Bias, variance, MSE of β̂1, β̂2, β̂3 and estimations of the maximum probability of breakpoints,
average breakpoint locations along with their 95% empirical confidence intervals from Scenario 1 to 4 (top
to bottom).

Scenario 1: exponential baselines

Bias of β̂ Variance of β̂ MSE of β̂ MAP of BP12 Mean of BP12 95% CI of BP12 MAP of BP23 Mean of BP23 95% CI of BP23

Exponential 0.002 0.006 0.006 0.411 1000 994-1006 0.032 2120 1662-2974
-0.002 0.015 0.015
-0.052 0.706 0.709

Weibull 0.002 0.007 0.007 0.408 1000 994-1006 0.043 2216 1740-2981
-0.002 0.011 0.011
-0.007 0.407 0.407

Piecewise 0.003 0.007 0.007 0.402 1000 994-1006 0.069 2479 1800-2987
0.000 0.009 0.009
-0.066 0.574 0.578

Nonparametric 0.002 0.007 0.007 0.429 1001 996-1007 0.054 1954 1013-2995
-0.069 0.820 0.825
-0.017 2.597 2.598

Scenario 2: Weibull baselines

Bias of β̂ Variance of β̂ MSE of β̂ MAP of BP12 Mean of BP12 95% CI of BP12 MAP of BP23 Mean of BP23 95% CI of BP23

Exponential -1.207 0.000 1.458 0.054 998 973-1016 0.092 1943 1407-2002
0.512 0.003 0.266
2.737 0.168 7.661

Weibull -0.010 0.008 0.008 0.309 1002 996-1020 0.154 1997 1978-2009
-0.009 0.008 0.008
-0.043 0.255 0.257

Piecewise -0.187 0.007 0.042 0.323 1001 995-1008 0.192 1998 1983-2011
0.031 0.007 0.008
0.007 0.304 0.304

Nonparametric 0.000 0.010 0.010 0.332 1000 992-1008 0.195 1998 1983-2012
-0.006 0.009 0.009
-0.122 0.708 0.723

Scenario 3: piecewise constant baselines

Bias of β̂ Variance of β̂ MSE of β̂ MAP of BP12 Mean of BP12 95% CI of BP12 MAP of BP23 Mean of BP23 95% CI of BP23

Exponential -0.033 0.008 0.009 0.214 1001 986-1014 0.043 1997 1854-2119
0.002 0.010 0.010
-0.007 0.016 0.016

Weibull -0.013 0.007 0.008 0.216 1001 986-1014 0.044 1994 1847-2111
0.003 0.010 0.010
-0.007 0.015 0.015

Piecewise -0.007 0.008 0.008 0.217 1001 986-1014 0.046 1990 1844-2116
0.006 0.011 0.011
-0.005 0.016 0.016

Nonparametric 0.002 0.008 0.008 0.220 1002 991-1021 0.042 1997 1847-2131
-0.001 0.010 0.010
-0.006 0.015 0.015

Scenario 4: Gompertz baselines

Bias of β̂ Variance of β̂ MSE of β̂ MAP of BP12 Mean of BP12 95% CI of BP12 MAP of BP23 Mean of BP23 95% CI of BP23

Exponential -0.639 0.002 0.410 0.238 1000 992-1006 0.027 1641 1015-2016
0.196 0.020 0.058
0.575 0.035 0.366

Weibull -0.212 0.005 0.050 0.352 1000 994-1006 0.049 1994 1899-2079
0.022 0.010 0.010
0.044 0.017 0.019

Piecewise -0.076 0.007 0.013 0.378 1000 994-1006 0.051 1989 1862-2080
0.013 0.010 0.011
0.028 0.019 0.020

Nonparametric 0.006 0.008 0.008 0.420 1000 991-1006 0.049 2009 1928-2137
-0.004 0.011 0.011
-0.023 0.165 0.165
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Figure 2. Left panel: simulated hazard rates for the null case (no breakpoints) based on the French national
breast cancer incidence data. Right panel: simulated hazard rates for the two breakpoints model. Solid line:
individuals 1 to 15, 000. Dash line: individuals 15, 001 to 25, 000. Dot line: individuals 25, 001 to 35, 000.

Table 2. Proportion of selected models using the AIC and BIC criterion for either the exponential baseline
estimator or the piecewise constant hazard baseline estimator. Left side: when there is no breakpoints in the
population. Right side: when the true number of breakpoints is two.

Number Exponential estimator Pch estimator
of bp AIC BIC AIC BIC

0 0.870 1 0.917 1
1 0.097 0.066
2 0.024 0.015
3 0.003 0.002
4 0.003
5
6 0.003

Number Exponential estimator Pch estimator
of bp AIC BIC AIC BIC

0
1 0.071
2 0.801 0.987 0.872 0.929
3 0.116 0.013 0.091
4 0.047 0.025
5 0.018 0.009
6 0.018 0.003

Table 3. Proportion of selected models using the BIC criterion for the exponential baseline estimator with
different values of RH in the smooth change of hazard rates scenario.

Number of bp RH = 5 RH = 10 RH = 50

0 0.882 0.242
1 0.117 0.756 0.289
2 0.001 0.002 0.692
3 0.019
4

Prepared using sagej.cls



26 Journal Title XX(X)

Table 4. λ’s and β’s estimates in the Cox model adjusted by gender with exponential baseline for the
models with zero, one, two, three and four breakpoints along with their BIC criterion.

No bp One bp Two bp Three bp Four bp
1948 1948, 62 1946, 57, 62 1944, 48, 58, 69

λ̂1 0.012 0.022 0.023 0.023 0.024

λ̂2 0.006 0.008 0.011 0.015

λ̂3 0.003 0.006 0.009

λ̂4 0.003 0.004

λ̂5 0.001

β̂1 0.278 0.256 0.256 0.257 0.221

β̂2 0.477 0.468 0.344 0.357

β̂3 0.366 0.590 0.407

β̂4 0.377 0.509

β̂5 -0.101
BIC 7426.405 7214.413 7179.012 7187.442 7194.631
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Figure 3. Marginal distributions of the breakpoints in the models with one, two, three and four breakpoints.
The maximum a posteriori for the breakpoints are respectively: top-left 1948, top-right 1948 and 1962,
bottom-left 1946, 1957 and 1962, bottom-right 1944, 1948, 1958 and 1969.
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Figure 4. Weighted Kaplan-Meier estimators in the models with zero (top-left), one (top-right), two
(bottom-left) and three (bottom-right) breakpoints.
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