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chapter 2

Introduction

2.1 Time to event analysis: a brief review

2.1.1 The general framework

In survival analysis the event of interest is denoted T ú and the observations are:
I

T = T ú · C

� = I(T ú Æ C),

where C is a censoring variable assumed to be independent of T ú (independent censoring as-
sumption) and I(·) represents the indicator function. With such types of data a key function of
interest is the hazard rate defined as:

⁄(t) := lim
—tæ0

P[t Æ T ú < t + —t|T ú Ø t]
—t

·

Then, it can be easily shown that under independent censoring, we have (see [ABGK93] for
instance):

⁄(t) = lim
—tæ0

P[t Æ T < t + —t, � = 1|T Ø t]
—t

·

This last equation implies that the hazard rate can be estimated using only the observed data.
Many quantities of interest are derived from this relation, such as the well known Nelson-Aalen
estimator (see [Aal75] or [Nel72]) of the cumulative hazard function �(t) :=

s t
0 ⁄(u)du and the

Kaplan-Meier estimator (see [KM58]) of the survival function S(t) := P[T ú > t].
In a regression context one also observes an external d dimension covariate vector X(·)

which is allowed to be time-dependent. In this setting, one of the most popular model is the
Cox regression model (see [Cox72]):

⁄(t|X(t)) = ⁄0(t) exp(—0X(t)), (2.1)

where —0 is an unknown row d dimensional parameter and ⁄0 is an unknown function. An
alternative model is the Aalen model (see [Aal80], [Aal89] or more recently [MS07]), defined as

⁄(t|X(t)) = ⁄0(t) + —0X(t). (2.2)

In both the Cox and Aalen models, estimating the hazard function amounts to estimate the —
regression parameter and the baseline function ⁄0. In the regression framework, the independent
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2.1. Time to event analysis: a brief review

censoring assumption corresponds to assuming T ú to be conditionally independent to C given
(X(s), s Æ T ú).

In order to perform estimation, one observes the i.i.d sample (Ti, �i)i=1,...,n in the non-
parametric context or (Ti, �i, {Xi(s), s Æ Ti})i=1,...,n in the regression context. It can be shown
that the likelihood function is equal to:

L(—, ⁄0) =
nŸ

i=1
⁄(Ti|Xi(Ti))�i exp

A

≠
⁄ Ti

0
⁄(u|Xi(u))du

B

. (2.3)

In the Cox model, under the independent censoring assumption, the following Cox partial like-
lihood can be used in order to estimate —:

Lcox(—) =
nŸ

i=1

exp(—Xi(Ti))q
j I(Tj Ø Ti) exp(—Xj(Ti))

·

This expression is valid when assuming a non-parametric baseline, that is the baseline is defined
as a function putting mass only at the observed times (the event times Ti such that �i = 1).
Once the — term has been estimated, the Breslow estimator (see [Bre72]) can be used to estimate
the cumulative baseline function:

�̂0(t) =
nÿ

i=1

�iI(Ti Æ t)
q

j I(Tj Ø Ti) exp(—Xj(Ti))
·

In the rest of the manuscript we will use the notations: F (t) = P[T ú Æ t], G(t) = P[C Æ t]
and H(t) = P[T Æ t]. We will also introduce the endpoint of the study · > 0, which is usually
defined such that · < inf{t : H(t) = 1}.

2.1.2 The counting process notation
Survival analysis data can be nicely represented using counting process notations. This approach
was developed from the mid’s 1970 to the early 1990 and is described in the seminal book from
[ABGK93]. All the theoretical development of survival analysis estimators such as the Kaplan-
Meier estimator, the regression estimators derived from the Cox model and so on, are derived
from this counting process approach. More precisely, from these counting approach notations,
a martingale decomposition can be derived. Then, a law of large numbers type of result can
be derived from the Lenglart inequality (see [Len77]) and a central limit theorem for local
martingales is derived from Rebolledo’s theorem (see [Reb78] and [Reb80]). In particular, in the
Cox regression framework, consistency and asymptotic normality of —0 and �0 was proved in
[AG82] using these two ingredients. See also [FH91] for applications of the Lenglart inequality
and Rebolledo’s theorem in a survival analysis context.

Introduce the counting process of interest Nú(t) = I(T ú Æ t) and its at risk process Y ú(t) =
I(T ú Ø t) for t Ø 0. Introduce also the observed counting and at risk processes denoted
respectively by N(t) = I(T Æ t, � = 1) and Y (t) = I(T Ø t) and let · be the endpoint of
the study. It will generally be assumed that P[T > t] > 0 for all t in [0, · ]. In the regression
context, the data now consist of n independent replications (Ni(t), Yi(t), {Xi(s), s Æ t})i=1,...,n,
for t œ [0, · ].

By definition of the hazard rate, we have:

E[dNú(t)|Fú

t≠] = Y ú(t)⁄(t|X(t))dt, (2.4)

where dNú(t) represents the jump size at time t of the process Nú and Fú
t = ‡{Nú(s), Y ú(s), X(s),

s Æ t} is a filtration. Furthermore, X(t) is also assumed to be measurable with respect to Fú
t≠.

8



Chapter 2. Introduction

We will also assume independent censoring which can be expressed in its general definition as
(see [ABGK93] or [MS07]):

E[dNú(t)|Fú

t≠] = E[dNú(t)|Gt≠],

where Gt = Fú
t fi ‡{I(s Æ C), s Æ t} is an enlarged filtration. This equation implies that the

censoring process does not convey any additional information on the probability of a jump of
the counting process. As a su�cient condition of this equation to hold one can assume T ú to be
conditionally independent of C given (X(s), s Æ T ú). Now, using the innovation theorem it can
be proved that (see [ABGK93] or [MS07]):

E[dN(t)|Ft≠] = Y (t)⁄(t|X(t))dt,

where Ft = ‡{N(s), Y (s), X(s), s Æ t} represents the observed filtration. As previously, this
result is crucial as it implies that the hazard rate can be estimated using only the observed data.

Under independent censoring, it can then be proved that one has the following martingale
decomposition:

N(t) =
⁄ t

0
Y (u)⁄(u|X(u))du + M(t),

where M is a martingale with respect to the filtration Ft. This representation gives a direct
expression of the residuals as N(t) ≠

s t
0 Y (u)⁄(u|X(u))du and the Lenglart’s inequality and

Rebolledo theorem allow to prove consistency and asymptotic normality of quantities
⁄ t

0
h(u)dM(u),

for any Ft≠ measurable function h.

2.2 Multi-state and competing risk situations
A competing risk situation arises when individuals are at risk of experiencing di�erent type of
events and any of these events precludes the occurrence of the others. A multi-state situation
occurs when individuals are at risk of experiencing di�erent events but these events are not
necessarily mutually exclusive. Both situations are described by a set of discrete states that the
individuals might occupy. The hazard risks for moving from one state to another can be di�erent
which allows great flexibility in the modelling approach. Figure 2.1 describes a competing risk
situation with two events and the illness death model which is a special case of multi-state
models with only three possible states.

Taking into account competing-risks is essential as an individual that will experience an event
should not be at risk of experiencing another event anymore. In the competing risk scenario of
Figure 2.1, on the left side, the so-called cause specific hazards ⁄1 and ⁄2 are defined as:

⁄k(t) := lim
—tæ0

P[t Æ T úk < t + —t|T ú1 Ø t, T ú2 Ø t, X(t)]
—t

, (2.5)

where T úk represents the true time to event of type k, k = 1, 2. These quantities can be
estimated from the observed data, treating the other event as a censoring event. However,
care must be taken when the interest lies in a cumulative function. Typically, the cumulative
incidence function is written

P[T úk Æ t|(X(s), s Æ t)] =
⁄ t

0
⁄k(u)S(u|X(u))du, (2.6)
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State 0

Type 1 event

Type 2 event

⁄1

⁄2

0: Healthy

2: Dead

1: Ill
⁄01

⁄02

⁄12

Figure 2.1: Examples of a competing risk situation on the left (with two types of events) and of
the illness death model on the right.

where S is the conditional event-free survival function defined as S(t|X(t)) = exp(≠
s t

0(⁄1(u) +
⁄2(u))du). See for example [MS07] for more details on competing risk models.

In the illness-death model, on the right panel of Figure 2.1, typical quantities of interest
are the transition intensities. For two states i, j œ {0, 1, 2}, the transition intensity Pi,j(x, y) is
defined, for x < y, as the probability for a subject being in state i at time x to be in state j at
time y. For example, in the homogeneous Markov illness-death model, the transition intensity
for staying in the healthy state from time x to y, is equal to

P00(x, y) = exp
3

≠
⁄ y

x
(⁄01(u) + ⁄02(u))du

4
,

and the transition intensity for moving from the healthy state to the disease state between times
x and y, and to be still occupying the disease state at time y, is equal to

P01(x, y) =
⁄ y

x
exp

3
≠

⁄ u

x
(⁄01(v) + ⁄02(v))dv

4
⁄01(u) exp

3
≠

⁄ y

u
⁄12(w)dw

4
du. (2.7)

All transition intensities can be computed in a similar way. For more complex multi-state
designs, a transition probability matrix can be computed from a product-integral formula in a
similar manner as the Kaplan-Meier estimator is derived in more classical contexts in survival
analysis. This formula is typically resolved using a Kolmogorov forward di�erential equation
(see [ABGK93]). For more details about multi-state models, see for instance [AK12].

2.3 Recurrent events with a terminal event

2.3.1 Modelling the rate function
Recurrent event data can be seen as an extension of standard survival data using the counting
process approach. They occur when individuals may experience the same event several times.
Typical examples in medical applications include the hospitalisations of a patient due to a
specific disease, relapses from a disease, asthma attacks in respirology studies, epileptic seizures
in neurology studies etc. See [CL07] for a thorough discussion of recurrent events models and
applications. In many of these studies, the patients are also at risk of experiencing a terminal
event, often death, which must be accounted for as a competing risk. We introduce the counting
process of interest Nú(t) which counts the number of recurrent events that have occurred before
time t and the at risk process Y ú(t) = I(T ú Ø t) where T ú represents the actual time of death.
The recurrent event model is defined as:

E[dNú(t)|Y ú(t), X(t)] = Y ú(t)⁄(t|X(t))dt, (2.8)

10



Chapter 2. Introduction

where ⁄(t|X(t)) is called the rate function. Next this rate function can be modelled using the
Cox model of Equation (2.1) or the Aalen model of Equation (2.2). In the absence of terminal
event, the Cox rate model was introduced by [PC93], [LN95] and rigorous theoretical arguments
were developed in [LWYY00]. The extension to the presence of terminal event in the Cox model
is discussed in [LNC97] and [CL07]. Model (2.8) when the rate function is assumed to follow
the Aalen model has been studied in great detail in [Sch02].

In Equation (2.8) it is important to stress that the rate function ⁄ is defined by conditioning
on Y ú(t) and X(t) in the left-hand side of the equation. Alternatively, one could condition on
the entire history of the process Nú, namely Ft≠ as in Equation (2.4), in which case ⁄ would
represent the intensity of the recurrent event process Nú. However since ⁄ in the right side of
Equation (2.4), does not depend on the history of the process Nú, this would imply that all the
influence of the prior events on the future recurrence, if there is any, is mediated through the
time-varying covariate at time t. If X is time invariant, then this model would be equivalent
to assuming an independent increments structure for Nú as in the Poisson process. In many
medical applications, this independent increment assumption is not realistic and Model (2.8)
should be used instead. This model is very general and as a matter of fact, it can be shown for
instance that it encompasses the recurrent frailty model (see [LWYY00] for details).

As in classical survival analysis contexts, censoring will generally occur such that the observed
recurrent event process is N(t) = Nú(t·C) and the observed at risk process is Y (t) = I(T ú·C Ø
t). Under the following independent censoring assumption

E[dNú(t)|Y ú(t), X(t)] = E[dNú(t)|Y ú(t), I(C Ø t), X(t)],

it can be shown that Equation (2.8) holds with Nú and Y ú replaced by their observed counter
parts N and Y . In other words, the relation E[dN(t)|Y (t), X(t)] = Y (t)⁄(t|X(t))dt holds and
inference can then be performed using the observed data.

Conditioning on the at-risk process at time t and not on the entire history also has implica-
tions on a theoretical point of view. In particular, martingale properties are no longer available
and empirical process theory must be used instead. When modelling ⁄ through a Cox or Aalen
model, the asymptotic distributions of the regression parameters can be derived from the func-
tional central limit theorem (see [Pol90]) or from central limit theorems for Donsker classes as
in [VDVW96]. In the absence of terminal event, the theory for the regression parameters in the
Cox model has been developed in [LWYY00].

In practice, the likelihood function is similar to the standard survival analysis context and
the regression estimators are actually identical in the intensity model (when conditioning on the
entire history) and in the rate model (2.8). However, the variance of the estimators is di�erent
in the rate model as it involves the covariance structure of the recurrent event increments,
and a sandwich estimator is used to estimate this variance. As a consequence, assuming the
Poisson assumption can substantially change statistical inference results in statistical tests or
confidence intervals. Since only the variance of the estimators is changed in the rate model,
the corresponding variance estimator is often called the robust variance estimator, in the sense
that this estimator is robust to violation of the independent increment assumption. It should
be noted that this robust variance estimator is equivalent to the one derived in cluster survival
data as recurrent events can be considered as clustered data where each individual represents
a di�erent cluster. See [LWYY00] or [Wil00] for the explicit expression of this robust variance
estimator.

2.3.2 Non-parametric estimation of the cumulative mean function
In a non-parametric setting, an alternative to the usual Kaplan-Meier survival estimator is to
compute the average number of recurrent events experienced until any time point. From the
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2.3. Recurrent events with a terminal event

independent censoring assumption, we have the two equations:

E[dNú(t)|Y ú(t)] = Y ú(t)⁄(t)dt

E[dN(t)|Y (t)] = Y (t)⁄(t)dt.

Taking the expectation in the second equation gives E[dN(t)] = H(t)⁄(t)dt, where H(t) =
P[T ú · C > t] = S(t) · P[C > t] and S(t) = P[T ú > t]. An estimator of the cumulative rate
function is then derived as

‚�(t) =
nÿ

i=1

⁄ t

0

dNi(u)
qn

j=1 Yj(u) · (2.9)

Taking now the expectation in the first equation gives E[dNú(t)] = S(t)⁄(t)dt. It is then easily
seen that

E[Nú(t)] =
⁄ t

0

S(u)E[dN(u)]
1 ≠ H(u) =

⁄ t

0

E[dN(u)]
P[C > u] , (2.10)

and the cumulative mean estimator is defined as:

\E[Nú(t)] =
nÿ

i=1

⁄ t

0

Ŝ(u)dNi(u)
qn

j=1 Yj(u) , (2.11)

where Ŝ is the Kaplan-Meier estimator of S. This estimator was introduced by [GL00] in a
di�erent way and its theoretical derivations (such as the construction of confidence intervals)
can be found in their paper.

Finally note that in the absence of a terminal event, an individual is always at risk of
experiencing a recurrent event. In that case the counting process of interest verifies the equality
E[dNú(t)] = ⁄(t)dt and the observed counting process N(t) = Nú(t·C) verifies E[dN(t)|Y (t)] =
Y (t)⁄(t)dt where Y (t) = I(C Ø t). Then the cumulative mean estimator is derived as

\E[Nú(t)] = ⁄̂(t) = 1
n

nÿ

i=1

⁄ t

0

dNi(u)
1 ≠ Ĝ(u≠)

, (2.12)

where 1 ≠ Ĝ is the Kaplan-Meier estimator of the censoring distribution.

2.3.3 Recurrent event models with dependence on prior recurrences
An alternative to Model (2.8) is to incorporate the e�ect of prior recurrences on the rate function.
This is of interest when one suspects the rate to change as more recurrences occur. It is also
a powerful tool for the purpose of prediction: knowing the past history of an individual (his
number of previous recurrent events), the model will allow to predict the risk of experiencing a
new recurrent event. These models are presented and discussed in great detail in [CL07]. As an
illustration, we introduce the following recurrent event situation:

E[dN(t)|Ys(t), X(t)] = Ys(t)⁄E
s (t|X(t))dt,

E[dNT (t)|Ys(t), X(t)] = Ys(t)⁄T
s (t|X(t))dt, s = 1, . . . , 6, (2.13)

where Ys(t) = I(N(t≠) = s ≠ 1, T Ø t), ⁄E
s represent rate functions for the recurrent event

process and ⁄T
s represent hazard rates for the terminal event. In this model there are six

di�erent at-risk processes Ys, corresponding to the situations where an individual has already
experienced 0, 1, . . ., or 5 and more events. Note that the rate functions ⁄E and hazard rates
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⁄T are allowed to change according to the number of previous recurrent events. For simplicity
the model is written in terms of the observed at-risk and counting processes, since as previously,
there is an equivalence between the model with the (unobserved) processes of interest and the
observed ones under the independent censoring assumption. In our setting, the independent
censoring assumption can be written as

E[dNú(t)|Y ú

s (t), X(t)] = E[dNú(t)|Ys(t), X(t)], (2.14)

where Y ú
s (t) = I(Nú(t≠) = s ≠ 1, T ú Ø t) are the true (unobserved) at risk processes.

A di�erent and e�cient way of characterising this model, is to use the multi-state repres-
entation. In Figure 2.2 below we see all the di�erent possible states for an individual with the
di�erent hazard rates and rate functions. From this figure, it is also clear that the terminal
event plays the role of a competing event and must be accounted for in the study as patients
visiting this state are no longer at risk of experiencing a new event. The last state encompasses
all the events equal to or greater than 5 and has a special status: individuals in this state are
continuously at risk of experiencing an event with rate equal to ⁄E

6 . Transition intensities can
then be computed using the multi-state approach of Section 2.2.

Ev. 0

Term. Ev.

Ev. 1 Ev. 2 Ev. 3 Ev. 4 Ev. Ø 5
⁄E

1 ⁄E
2 ⁄E

3 ⁄E
4 ⁄E

5

⁄T
1

⁄T
2

⁄T
3 ⁄T

4 ⁄T
5

⁄T
6

⁄E
6

Figure 2.2: Illustration of a recurrent event model with dependence on prior events as a multi-
state situation. Individuals start in the state Ev. 0 and can then move to the other states as
time increases. The state Term. Ev. is an absorbing state.

2.4 Interval censoring

Interval censored data occur when the true time to event is only known to have occurred between
two di�erent times L and R. In other words, L and R are observed and we know that P(T ú œ
[L, R]) = 1. The type of data that we consider in this manuscript are called mixed interval
censored and they include exact, right-censored, left-censored and interval-censored observations.
They can be described as follows:

- Left censoring if 0 = L < R < Œ
- Interval censoring if 0 < L < R < Œ
- Exact observation if L = R = T ú

- Right censoring if 0 < L < R = Œ.

For sake of simplicity we also introduce the notation ” œ {0, 1} which represents the right-
censored status of the individuals, with ” = 1 if the observation is left-censored, interval-censored,
or exact and ” = 0 if the observation is right-censored. The observations consist of the data
(Li, Ri, Xi)i=1,...,n in the non-parametric context. In the regression context, a time independent
covariate vector Xi is also observed.
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2.4.1 Non-parametric analysis of interval-censored data
Interval-censored data are challenging to analyse. As a matter of fact, the non-parametric
estimator of the survival function S is not explicit and iterative algorithms must be implemented.
The asymptotic distribution of this estimator is not explicit and the estimator does not achieve
the n1/2 rate of convergence. The first algorithm for the survival function estimator was proposed
by [Tur76]. This algorithm is based on the following Efron’s self consistency equation (see
[Efr67]):

S(t) = P[L > t, ” = 0] +
⁄⁄

S(t) ≠ S(r)
S(l) ≠ S(r)I(l < t < r)dFL,R(l, r),

where FL,R is the joint cumulative distribution function of (L, R). Since the Lis and Ris are
observed, the empirical version of the previous equality holds when replacing S by Ŝ and FL,R by
its empirical cumulative distribution function. This equation then needs to be solved with respect
to Ŝ. In Turnbull’s algorithm, instead of directly solving the self consistency equation, one must
first determine the innermost intervals, which are the intervals whose left and right end points
are given by some of the Lis and Ris respectively and that contain no other Lis and Ris except at
their end points. Once these are known, an iterative algorithm is used to determine the value of
the survival estimator on these intervals. Using the notation of [Tur76], the m innermost intervals
are defined as [q1, p1], . . . , [qm, pm] and sj = F (pj+) ≠ F (qj≠) represents the contribution of the
cumulative distribution function F = 1 ≠ S on the jth innermost interval. Turnbull proposed
to estimate s = (s1, . . . , sm) using the self-consistent equation: for j = 1, . . . , m,

sj = fij(s) := 1
n

nÿ

i=1

–ijsjqm
k=1 –iksk

, (2.15)

where –ij = 1 if [qj , pj ] µ [Li, Ri] and 0 otherwise,
q

j sj = 1 and sj Ø 0. The Turnbull
algorithm is an iterative algorithm where at the Kth step, ŝ(K)

j = fij(ŝ(K≠1)) for j = 1, . . . , m

and ŝ(0)
j = 1/m for all j. At convergence, the ŝjs verify Equation (2.15). The final estimator of

the survival function is then defined as

Ŝ(t) = 1 ≠ (ŝ1 + · · · + ŝj),

for t œ (pj , qj+1). Note that, as defined in [Tur76], some of the ŝjs can still be null on the
innermost intervals. In other words, the innermost intervals do not necessarily refer to the
support of Ŝ. See also [Sun07] for more details about innermost intervals and the Turnbull’s
algorithm. Interestingly, it is possible to prove that this algorithm is actually equivalent to the
EM algorithm developed by [DLR77] if one treats the time of interest T ú as an unobserved
variable. See for example [GW92a] for the connection between Turnbull’s estimator and the EM
algorithm.

Several di�culties arise from Turnbull’s estimator. First of all, the resulting survival estim-
ator is not necessarily unique in the sense that more than one estimator may satisfy Equation
(2.15). Secondly, from the definition of the estimator one can see that the estimator is actually
not defined in the intervals (qj , pj). In [GW92a] and [Gro96], asymptotics of the Non Parametric
Maximum Likelihood Estimator (NPMLE) are studied. Considering di�erent scenarios depend-
ing on properties of the distribution of (L, R), it can be shown that the NPMLE has a n1/3 rate
of convergence or in the best case, a (n log(n))1/3 rate of convergence. Moreover, the asymptotic
distribution of the NPMLE is not explicit. As a result, the variance of the NPMLE can be quite
large and it is not directly possible to construct confidence intervals or statistical tests from the
quantiles of the asymptotic distribution of the NPMLE. The slow convergence of the NPMLE
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is explained by the support of the survival estimator which is usually composed of a number of
intervals that is much lower than the sample size. In other words, the support of the survival
estimator consists of a much lower number of intervals than in a classical right-censored survival
analysis. Note that, in the latter case, the union of innermost intervals is directly the support
of Ŝ and it corresponds to the set of singletons composed of all non censored observations if the
last time is observed. In the case where the last observation is right-censored, the interval whose
left-endpoint is the last observation and right-endpoint infinity also corresponds to an innermost
interval.

Finally, it should be noted that other algorithms exist to derive a non-parametric estimator
of the survival function, such as the convex minorant algorithm. This algorithm was developed
by [GW92a] and later by [Jon98] and is based on the isotonic regression. This method will not
be used in this manuscript and shall not be discussed any further.

2.4.2 Regression modelling of interval-censored data
Assume that the observations consist of (Li, Ri, Xi)i=1,...,n, where Xi is a covariate vector. In
a regression model, maximisation over the model parameters can be achieved using the likeli-
hood of the observed data. Define ◊ as the model parameter. In the mixed case of interval
censored data, the contributions to the likelihood of exact observations can be separated from
contributions of non-exact (interval censored, left censored or right censored) observations. The
observed likelihood is equal to:

Lobs(◊) =
Ÿ

i not exact

I

exp
1

≠
⁄ Li

0
⁄(t|Xi)dt

2 A

1 ≠ exp
1

≠
⁄ Ri

Li

⁄(t|Xi)dt
2BJ”i

◊
I

exp
1

≠
⁄ Li

0
⁄(t|Xi)dt

2J1≠”i Ÿ

i exact
⁄(t|Xi) exp

1
≠

⁄ Li

0
⁄(t|Xi)dt

2
.

The hazard rate can be modelled by the Cox model (2.1) for example. In that case, a parametric
baseline must be specified. The standard choices comprise the exponential, Weibull or piecewise
constant baseline hazards. Using one of these specifications of the baseline will lead to a fully
parametric model. Maximising Lobs(◊) can be performed using Newton-Raphson techniques
and statistical inference and tests can be based on standard likelihood methods. See [Sun07] for
more details about fully parametric regression models for interval censored data.
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chapter 3

Mathematical statistics

In this chapter, I describe my new statistical developments with focus on theoretical contribu-
tions. This chapter refers to the published papers [P1], [P2], [P3] and the submitted paper [S1].
The first two papers introduce single-index models as an alternative to the popular Cox model,
one in the standard survival analysis context and the other one in the recurrent event context.
The other two papers discuss non-asymptotic results for non-parametric estimators. Paper [P3]
deals with the estimation of the rate function in the context of recurrent events using a kernel
estimator with Lepski’s method. Paper [S1] is concerned with the non-parametric estimation of
the survival function for interval censored data.

3.1 Single-index model approaches for right-censored data

The Cox model is by far the most widely used model in survival analysis. Its popularity is
mostly due to the nice interpretation of hazard ratios which are assumed to be constant over
time: this allows to summarise the relative hazard risk of one covariate over another by a single
number that is constant over time. However, this assumption is very strong and is violated in
many real data applications. The aim of [P1] and [P2] were to generalise the Cox model using
single-index models. See for instance [HHI93], [Ich93] and [XTLZ02] for a review of single-index
model theory.

While the single-index model is usually defined in terms of its expectation, we will first focus
our interest on the following alternative single-index model: let —0 be a d dimensional row vector,
we assume that

f(y|x) = f—0(y, —0x), (3.1)

where f(y|x) represents the conditional density of T ú given X = x evaluated at y and f—0(y|u)
represents the conditional density of T ú given —0X = u evaluated at y. For identifiability
purposes, the first component of —0 is assumed to be equal to one. It is straightforward to see
that for a time independent covariate X the Cox model (2.1) satisfies this assumption as the
hazard function completely specifies the distribution of the time variable T ú. As a matter of
fact, our single-index model is very general: the class of proportional hazard models, the Aalen
model, the Accelerated Failure Time model (see [BJ79]) or the proportional odds model (see
[Ben83]) are all special cases of Model (3.1).

Model (3.1) was initially studied in the uncensored case by [DHH03]. However, their estim-
ation procedure cannot be directly implemented in the censored framework since the response
variables are not directly observed. A solution consists of using functionals of the Kaplan-Meier
estimator. In order to define an analogue of this estimator to the bivariate case, we first rewrite
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the Kaplan-Meier estimator as a jump function: let Ŝ be the Kaplan-Meier estimator of the
survival function, then we have:

1 ≠ Ŝ(t) =
nÿ

i=1
�iWinI(Ti Æ t),

where Win represent the jumps of 1 ≠ Ŝ. See [Efr67] or more recently [SD01] for this expression
of the Kaplan-Meier estimator. The weights Win can actually be expressed as a function of
the Kaplan-Meier estimator of the censoring distribution G. Let 1 ≠ Ĝ be this estimator, then
Win = 1/(1 ≠ Ĝ(Ti≠)). In the bivariate context, [Stu93] proposed to extend the expression of Ŝ
as a jump function to the estimation of the cumulative distribution function of (X, T ú) by:

F̂X,T ú(x, t) =
nÿ

i=1
�iWinI(Xi Æ x, Ti Æ t).

Since the Kaplan-Meier estimator is known to poorly behave in the tail of the distribution,
our estimation method uses a truncation bound that can be adaptively chosen from the data.
Finally, the truncation version of the conditional density of T ú given —0X = u is computed using
a non-parametric kernel estimator: for any parameter —,

f̂h,·
— (y|—x) =

s
Kh(—x ≠ —u)Kh(y ≠ z)I(z œ A· )dF̂X,T ú(u, z)

s
Kh(—x ≠ —u)I(z œ A· )dF̂X,T ú(u, z)

,

where K is a kernel, h a bandwidth, Kh(·) = K(·/h)/h and A· is a sequence of compacts
included in the set {t : 0 Æ t Æ ·}, for · Æ ·0 where ·0 = inf{t : P[T Æ t] = 1}. Both the
bandwidth of the kernel estimator and the truncation bounds are chosen from the data. The
final estimator of —0 is derived from likelihood arguments:

—̂ = arg max
—

nÿ

i=1
�iWin log(f̂h,·

— (y|—x))I(Ti œ A· ).

In order to derive valid theoretical results of the proposed estimator, uniform convergence
(with respect to the bandwidth and truncation bound) of the kernel estimator must be proposed.
This is achieved by assuming the class of density functions to belong to some Donsker classes (see
[VDVW96] for the definition of Donsker classes) and by using results for the uniform convergence
of kernel estimators from [EM05].

In paper [P2] a similar single-index model is introduced in a recurrent event context with a
terminal event. Using the notation of the introduction section, we assume that

E[Nú(t)|X = x] = µ—0(t, —0x),

where µ—0(t, u) = E[Nú(t)|—0X = u] and —0 is an unknown parameter vector. The estimation
procedure then uses a least-square criterion based on a similar relation as the one derived in
Equation (2.10) for the cumulative mean function. In our single-index model this can be written
as E[Nú(t)|X] =

s t
0 E[dN(u)|X]/P[C > u] under independent censoring. This leads to the

following least-square criterion that needs to be minimised:

⁄ nÿ

i=1

A

µ̂—(t, —Xi) ≠
⁄ t

0

dNi(u)
1 ≠ Ĝ(u≠)

B2
w(t)dt,
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where 1 ≠ Ĝ(u) represents the Kaplan-Meier estimator of the censoring distribution and w(t)
represents some measure that is used to ensure the existence of the integral. The term µ̂—

represents a kernel estimator of µ— defined as

µ̂—(t, u) :=
⁄ t

0

q
i K

1
—Xi≠u

h

2
dNi(s)

q
j K

1
—Xj≠u

h

2 !
1 ≠ Ĝ(u≠)

" ,

where K is a kernel and h a bandwidth. As previously, theoretical properties of the estimator are
derived uniformly on the bandwidth parameter and on the measure w using empirical processes
methods. This allows to choose the bandwidth and the measure from the data in an e�cient
way. In particular the measure is optimally chosen such as to prevent estimation issues caused
by large recurrent event values.

3.2 Non-asymptotic results for non-parametric estimators

In this section, I present the two papers [P3] and [S1] where non asymptotic results were proved
in the context of non-parametric estimators. In the first of these papers we studied a kernel type
estimator while in the second one we defined an estimator based on model selection theory. In
both cases, the main results are oracle bounds for the proposed estimators. These kind of results
are based on concentration inequalities due mainly to [Tal94] and [Tal95]. We recall below the
concentration inequality that was used in both papers. This inequality can be found in [KR05].

Theorem 1 Let ›1, . . . , ›n be independent random variables and let ‹n,›(f) =
qn

i=1{f(›i) ≠
E[f(›i)]}/n. Then, for a countable class of functions F uniformly bounded and – > 0, we have

E
5Ó

sup
fœF

‹2
n,›(f) ≠ 2(1 + 2–)A2

Ô

+

6
Æ 4

b

A
W

n
e≠b– nA2

W + 49B2

bn2Â2(–)e≠

Ô
2–bÂ(–)

7
nA
B

B

,

where Â(–) = (
Ô

1 + – ≠ 1) ‚ 1, b = 1/6 and

sup
fœF

ÎfÎŒ Æ B, E
Ë

sup
fœF

|‹n,›(f)|
È

Æ A, sup
fœF

1
n

nÿ

i=1
V[f(›i)] Æ W.

3.2.1 Estimation of the rate function for recurrent event data with a terminal
event

In the Introduction section, non-parametric estimation of the cumulative mean function E[Nú(t)]
was discussed. The standard estimator of [GL00] defined in Equation (2.11) is a piecewise con-
stant estimator with jumps at the observed recurrent events. Few other works using smoothing
approach were introduced in this framework. In [BBM+81], the authors briefly presented a
kernel estimator of the rate function when the recurrent events were supposed to be distributed
according to a Poisson process and the censored times constant. Then, [CWH05] extended their
results to a more general setting where no Poisson assumption is made, no terminal events are
considered and the censoring variables are random, but observed. In our work [P3], we extended
these results to a kernel estimator of the rate function in the context of non observed random
censoring and in the presence of a terminal event. For this estimator, we developed an adaptive
procedure to select the bandwidth, based on the work of [GL11]. We established oracle inequal-
ities for the L2-risk and the integrated L2-risk of our estimator with a data-driven choice of the
bandwidth. This was the first non-asymptotic result in this setting.
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Our paper [P3] focused on the composite endpoint defined as a recurrent event or a terminal
event. The rate function was thus defined in a slightly di�erent way than in the Introduction
section as for composite endpoints the recurrent event process should have jumps at any occur-
rence of either a recurrent event or a terminal event while in the introduction Nú will only jump
at observed recurrent events. In order to be consistent with the notations of this manuscript,
we present the kernel estimator as defined in the Introduction section. Let K be a kernel and h
a bandwidth. Based on Equation (2.9) our smooth estimator of the rate function is defined by:

⁄̂h(t) = 1
nh

nÿ

i=1

⁄
K

3
t ≠ s

h

4
dNi(s)

1 ≠ Ĥ(s≠)
,

where Ĥ(s) =
q

i I(Ti Æ s)/n and Ti = T ú

i ·Ci. Introducing the pseudo version of this estimator
as

⁄̃h(t) = 1
nh

nÿ

i=1

⁄
K

3
t ≠ s

h

4
dNi(s)

1 ≠ H(s≠) ,

where H(s) = P[T Æ s], we can easily see the intuition behind this estimator. Using a change
of variables, we have

E[⁄̃h(t)] ≠ ⁄(t) Æ
3⁄ 1

≠1
K(u)

1
⁄(t + uh) ≠ ⁄(t)

24
du,

and from a Taylor’s expansion we can see that the bias term is of order hb, where b represents
the regularity of the rate function and the kernel is assumed to be of order b. Finally, in order to
derive non asymptotic results on the rate function estimator ⁄̂, the key tool is a concentration
inequality due to Talagrand. See [P3] for the exact expression of this concentration inequality.

We finally provide the two oracle inequalities obtained for this estimator. Note that the kernel
is assumed to be supported on [≠1, 1] such that the integral in the definition of ⁄̂h(t) will vanish
outside the interval [t ≠ h, t + h] and therefore estimation of ⁄ is only performed for t such that
t ± h œ [0, · ], where · is the endpoint of the study defined such that · < inf{t : H(t) = 1}. We
will assume that the survival functions of the censoring and time to event variables are bounded
from below, that N(t) is bounded from above for all t in [0, · ] and that suptœ[0,· ] ⁄(t) < Œ. For
the L2-risk we proved that:

Theorem 2 For Hn a finite discrete set of bandwidths such that Card(Hn) Æ n,

’h œ Hn, nh Ø Ÿ1 log(n), for some Ÿ1 Ø 0,

and
ÿ

k:hkœHn

1
nhk

. loga(n), for some a Ø 0,

the estimator ⁄̂ĥ defined with the bandwidth ĥ chosen by Goldenshluger and Lepski’s method (see
[GL11]) satisfies

E
Ë!

⁄̂ĥ(t0) ≠ ⁄(t0)
"2È

Æ c
!
c2

1h2b + V0(h)
"

+ cÕ
log(1+a)(n)

n
,

where c is a positive constant and V0(h) is a quantity defined in Goldenshluger and Lepski’s
method for the choice of ĥ.
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For the integrated L2-risk we proved that:

Theorem 3 For Hn a finite discrete set of bandwidths such that Card(Hn) Æ n,

ÿ

k:hkœHn

1
nhk

. loga(n), for some a Ø 0,

and
ÿ

k:hkœHn

exp(≠s/hk) < Œ, ’s Ø 0,

the estimator ⁄̂ĥ defined with the bandwidth ĥ chosen by Goldenshluger and Lepski’s method (see
[GL11]) satisfies

⁄ ·≠h

h
E

Ë!
⁄̂ĥ(t) ≠ ⁄(t)

"2È
dt Æ c

!
·c2

1h2b + V (h)
"

+ cÕ
log(1+a)(n)

n
,

where c is a positive constant and V (h) is a quantity defined in Goldenshluger and Lepski’s
method for the choice of ĥ.

3.2.2 Estimation of the survival function for interval censored data

We now consider the interval censored context presented in the Introduction section with no
exact observations. Smooth estimators have already been proposed in the case 1 censoring, that
is when a time variable is observed for all subjects and the true event time is known to have
happened either before or after the observed time. For these types of data, [Yan00] studied
the estimate of functionals of the survival function using locally linear smoothers and [BC09]
proposed two adaptive estimators, one of quotient type and another one of regression type, using
projection methods. For interval censored data with case 2, spline methods were introduced in
[KS92] and a kernel method was studied in [BDS05] for the estimation of the density function.
More recently, smooth alternatives to the NPMLE were proposed by using a kernel method in
[GK11] and by introducing a log-concave constraint in the estimation procedure in [ABY16]. In
the submitted paper [S1], we propose a new selection model estimator based on a least square
criterion.

Introduce the variable Á which indicates if the observation is left-censored (Á = ≠1), interval-
censored (Á = 0) or right-censored (Á = 1). Then the estimation procedure is based on the
relations: E[1 ≠ I(Ái = ≠1)|Li] = S(Li) and E[I(Ái = 1)|Ui] = S(Ui). The resulting estimator is
somewhat complicated as it makes use of all types of observations (those for which Á = ≠1, Á = 0
and Á = 1) in order to obtain a large support of the estimator based on all observations. A key
feature of this new estimator is that the basis of the model selection estimator does not need to
be compactly supported. As a matter of fact, our results are valid for the Laguerre basis which
is R+ supported. Elements of our theoretical results were borrowed from a recent work from
[CGC18] to include this possibility in our results. We were then able to provide mean-square risk
bounds for the resulting estimators, to compute general rates of convergence in the compactly
supported case, and to propose a model selection device leading to an automatic bias variance
trade-o�.

We first consider a projection space �m(J) = span(Ï0, . . . , Ïm≠1) where (Ïj)0ÆjÆm≠1 con-
stitutes an orthonormal basis ÈÏj , ÏkÍ = Áj,k with respect to the scalar product Èu, vÍ =s

J u(x)v(x)dx. The domain J is the support of the basis and can be an interval [a, b] if we
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consider histogram or trigonometric basis, or the interval J = R+ if we consider the Laguerre
basis. An interesting property of these basis is to see that they all satisfy:

’m œ N \ {0}, sup
xœI

m≠1ÿ

j=0
Ï2

j (x) :=
...

m≠1ÿ

j=0
Ï2

j

...
Œ

Æ c2
Ïm,

for some constant cÏ > 0 depending on the basis only. Introduce the following matrices:
I

�(L)
m = (Ïj(Li))1ÆiÆn,1ÆjÆm, Ą́ (L) = (1 ≠ I(Ái = ≠1))1ÆiÆn = (1 ≠ I(Xi Æ Li))1ÆiÆn ,

�(R)
m = (Ïj(Ri))1ÆiÆn,1ÆjÆm, Ą́ (R) = (I(Ái = 1))1ÆiÆn = (1 ≠ I(Xi Æ Ri))1ÆiÆn ,

and
�m,Z = (ÈÏj , ÏkÍZ)1Æj,kÆm , ‚�m,Z = (ÈÏj , ÏkÍn,Z) for Z = L, R.

We have �m,Z = E[ ‚�m,Z ] for Z = L, R and

‚�m,L = 1
n

�(L)€
m �(L)

m , ‚�m,R = 1
n

�(R)€
m �(R)

m .

Now, define the contrast

“n(t) = ÎtÎ2
n,R + ÎtÎ2

n,L ≠ 2
n

nÿ

i=1
I(Ái = 1)t(Ri) ≠ 2

n

nÿ

i=1
I(Ái ”= ≠1)t(Li),

where for Z = L, R, ÎtÎ2
n,Z =

qn
i=1 t2(Zi)/n. Our estimator is defined as:

‚Sm = arg min
tœ�m

“n(t).

In order to perform model selection, we first define the collection of models Mn by

Mn =
;

m œ N \ {0} : m(Î(�m,L + �m,U )≠1Î2
op ‚ 1) Æ c

n

log(n)

<
,

where
c =

3
6 · 1

ÎfL + fRÎŒ

4 1
48c2

Ï
,

and fL, fR are the densities of L and R. The random set „Mn is defined analogously to Mn

but with �m,Z for Z = L, R replaced by ‚�m,Z and c multiplied by 4. We propose to select our
model in the following way:

m̂ = arg min
mœ„Mn

[“n( ‚Sm) + pen(m)],

with pen(m) = Ÿm/n and Ÿ is a numerical constant. The constant Ÿ is calibrated on preliminary
simulation experiments. Introduce the norm Î · ÎL+R such that ÎtÎ2

L+R =
s

t2(x)(fL(x) +
fR(x))dx. Denote by SJ the survival function restricted on the domain J , that is SJ(x) = 0 for
x ”œ J . Based on results stated in [CGC18], we obtained the following oracle result.

Theorem 4 Assume that
s

J S2(x)(fL(x) + fR(x))dx < +Œ, and �(L)€
m �(L)

m + �(R)€
m �(R)

m is
invertible. We have

E
#
Î ‚Sm̂ ≠ SJÎ2

n

$
Æ C inf

mœMn

3
inf

tœ�m

Ît ≠ SJÎ2
L+R + m

n

4
+ C Õ

n
,

where C is a numerical constants and C Õ is a constant depending on fL, fR, c.
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3.3 A penalised event-specific rate model for recurrent events

In our work [P4] we considered a model for the recurrent event process where the rate function
depends on prior recurrences. Similarly as in Section 2.3.3 of the Introduction section, the model
is defined as:

E[dNú(t)|Y ú

s (t), X(t)] = Y ú

s (t)⁄s(t|X(t))dt, s = 1, 2, . . . ,

where Y ú
s (t) = I(Nú(t≠) = s ≠ 1, T ú Ø t) and T ú is a terminal event. We work under the

independent censoring assumption of Equation (2.14) and we assume that a maximum of B
events can be observed per individual. In practice, the value B must be chosen by the user and
this value means that events after the Bth are removed from the study. The rate function is
then modelled using either a multiplicative model based on the Cox model,

⁄s(t|X(t)) = ⁄0(t, s) exp(—0(s)X(t)), (3.2)

or an additive model based on the Aalen model,

⁄s(t|X(t)) = ⁄0(t, s) + (—0(s)X(t)). (3.3)

In both models, ⁄0 is an unknown baseline and —0 an unknown parameter that both need to be
estimated. Importantly, they both depend on the strata s representing the number of previous
recurrent events already experienced by the individual. Model (3.2) was already introduced
by [PWP81] while the Aalen model for event-specific data is new. The standard formula for
the likelihood (2.3) can be easily extended to the event-specific context. The estimator in the
multiplicative model, proposed by [PWP81] is defined as:

—̂ES/mult œ arg min
—œRd◊B

LP L
n (—)

= arg min
—œRd◊B

S

U≠ 1
n

Bÿ

s=1

nÿ

i=1

⁄ ·

0

Y
]

[—(s)Xi(t) ≠ log

Q

a
nÿ

j=1
Y s

j (t) exp (—(s)Xj(t))

R

b

Z
^

\ Y s
i (t)dNi(t)

T

V .

In the additive model, we can extend the work from [MS09a] and [MS09b] to define the following
estimator:

—̂ES/add œ arg min
—œRd◊B

LP LS
n (—) = arg min

—œRd◊B

Bÿ

s=1

Ó
—(s)Hn(s)—(s)€ ≠ 2—(s)hn(s)

Ô
,

where for all s œ {1, . . . , B}, Hn(s) are d ◊ d symmetrical positive semidefinite matrices and
hn(s) are d-dimensional vectors equal to

Hn(s) = 1
n

nÿ

i=1

⁄ ·

0
Y s

i (t)
1
Xi(t)≠X̄s(t)

2¢2
dt and hn(s) = 1

n

nÿ

i=1

⁄ ·

0
Y s

i (t)
1
Xi(t)≠X̄s(t)

2
dNi(t),

with X̄s(t) =
qn

i=1 Xi(t)Y s
i (t)/

qn
i=1 Y s

i (t) and the convention that 0/0 = 0.
The two estimators —̂ES/mult and —̂ES/add will be over-parametrised as soon as the number

of covariates d and/or the number of strata B is large. If we take for example, as a rule of
thumb, the criterion

Ô
n < d ◊ B to determine that a problem is over-parametrised we see that

in the Bladder tumour data example of [Bya80], there are four covariates with a maximum of 10
recurrences. Setting the parameter B to 5 gives 4◊5 = 20 parameters that need to be estimated
for a total of only 116 patients!
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3.3. A penalised event-specific rate model for recurrent events

The idea of our penalisation method is to force the e�ect of a covariate on two consecutive
values to be close to each other. This is achieved through a fused-lasso penalty (see for example
[TSR+05]). For all — = (—(s), s = 1, . . . , B) with —(s) = (—1(s), . . . , —d(s)), define for all
j = 1, . . . , d

—j = (—j(1), . . . , —j(B)) and tv(—j) =
Bÿ

s=2
|—j(s) ≠ —j(s ≠ 1)| =

Bÿ

s=2
|�—j(s)|.

We now consider the minimisers of the partial log-likelihood (respectively the partial least-
squares) penalised with a covariate specific total variation. Define the penalised estimators in
models (3.2) and (3.3) as:

—̂tv/mult œ arg min
—œRd◊B

Y
]

[LP L
n (—) + ⁄n

n

dÿ

j=1
tv(—j)

Z
^

\ and

—̂tv/add œ arg min
—œRd◊B

Y
]

[LP LS
n (—) + ⁄n

n

dÿ

j=1
tv(—j)

Z
^

\ ,

where ⁄n is a tuning penalty parameter that needs to be chosen. It turns out that these
penalised algorithms can be rewritten as lasso algorithms which facilitates their implementation.
The multiplicative model is implemented from the coxnet function in the glmnet R package
and the additive model is implemented from the ahazpen function in the ahaz R package.
In these packages, the tuning parameter ⁄n is chosen by 10-fold cross validation. A more
e�cient procedure, in terms of selection in consistency is the reweighted lasso (or two steps
estimator) derived by [Zou06] or [CWB08]. We will use the two steps procedure in applications
but theoretical results are proved only for the initial lasso type estimator. See the supplementary
material of [P4] for more details regarding the implementation of our algorithm.

We provide hereafter, the obtained theoretical results for our penalised estimator in the
multiplicative model. The results for the additive model are of similar nature and can be found
in [P4]. Define first As = {t : P[Nú(t≠) = s≠1, T ú Ø t] > 0} and · > 0 such that A·

s = Asfl[0, · ]
and for all s = 1, . . . , B and t in A·

s , suppose that E[Y s(t) > 0] and P[E(B) Æ · ] > 0 where
E(B) represents the Bth recurrent event (not always observed). Define also for all s = 1, . . . , B
for all t Ø 0,

s(l)(s, t, —) = E[Y s(t)X(t)¢l exp(—(s)X(t))], l = 0, 1, 2.

Introduce e(s, t, —) = s(1)(s, t, —)/s(0)(s, t, —), v(s, t, —) = s(2)(s, t, —)/s(0)(s, t, —) ≠ e(s, t, —)¢2

and �(s, —) =
s

A·
s

v(s, t, —)E[Y s(t)dN(t)]. For any s = 1, . . . , B and for any t Ø 0, the three
functions s(l)(s, t, —0) are bounded and e(s, t, —), v(s, t, —) and �(s, —) are finite under classical
assumptions (see [P4] for more details).

Theorem 5 Assume that for each s = 1, . . . , B, �(s, —0) is non-singular.

1. If ⁄n/n æ 0 as n æ Œ then —̂tv/mult converges to —0 in probability.

2. If ⁄n/
Ô

n æ ⁄0 Ø 0 as n æ Œ then
Ô

n(—̂tv/mult ≠ —0) converges in distribution to

arg min
uœRd◊B

�mult(u) = arg min
uœRd◊B

Ë Bÿ

s=1

;1
2u(s)€

�(s, —0)u(s) ≠ u(s)€›mult(s)
<

+ ⁄0
dÿ

j=1

Bÿ

s=2

Ó
|�uj(s)|I(�—j

0(s) = 0) + sgn(�—j
0(s))(�uj(s))I(�—j

0(s) ”= 0)
Ô È

,
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Chapter 3. Mathematical statistics

and for each s, ›mult(s) is a centred d-dimensional gaussian vector with covariance matrix
equal to

E

S

U
A⁄

A·
s

(X(t) ≠ e(s, t, —0)) Y s(t)dM s(t)
B

¢2T

V .

The process M s in the theorem is centred and defined for all s = 1, . . . , B and t in A·
s , by

M s(t) = N(t) ≠
⁄ t

0
E

#
dN(r)|X(r), T · C Ø r, N(r≠) = s ≠ 1

$
.

As explained in the introduction section, the process M s is not a martingale due to the definition
of the rate function which do not condition on all the entire history of the recurrent event
process. Therefore empirical processes theory is needed. A class of function defined as integrals
with respect to dM s are shown to be Donsker using results from [VDVW96] and central limit
theorem types are derived for this class of functions. Then, consistency and asymptotic normality
are proved in a similar manner as in [KF00].

We finally illustrate the performance of our penalised algorithm on the bladder tumour can-
cer data of [Bya80]. The dataset is composed of 116 patients with 47 patients from the placebo
group, 38 from the thiotepa group and 31 from the pyridoxine group. For interpretation purpose,
the treatment variable is coded as two new binary variables, pyridoxine and thiotepa, making
placebo the reference. On these patients, since 13.79% experienced at least five tumour recur-
rences and only 6.9% patients experienced six tumour recurrences or more, we set the parameter
B to 5. In addition to these two treatment variables two supplementary covariates were recorded
for each patient: the number of initial tumours and the size of the largest initial tumour. Figure
3.1 display the estimates obtained from the constant coe�cient, unconstrained, total variation
and two steps total variation estimators in the multiplicative model. The constant coe�cient
estimator is obtained in the simpler multiplicative model where the — parameter does not de-
pends on the number of previous recurrences s. The unconstrained estimator shows very strong
variations and is not interpretable as such. On the other hand, the constant coe�cient estimator
gives valuable information on the impact of each covariate, but in turn cannot detect a change
in variation. Our two steps total-variation estimator reaches a compromise between interpretab-
ility and detection of variations in the e�ect of each covariate. Indeed, a very interesting result
from our estimator on the Byar dataset comes from the e�ect of pyrodixine. While previous
studies in the literature have resulted in contradictory conclusions about the e�ciency of this
treatment, our estimator shows that this treatment has actually a protective e�ect for the first
three recurrences but then the risk of further recurrences is increased by this treatment. The
same pattern is observed for the Aalen model, see [P4] for more details.
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Figure 3.1: Estimates for the bladder data in the multiplicative model. The crosses represent the
constant estimator, the filled circles the unconstrained estimator, the circles the total variation
estimator and the squares the two steps total variation estimator.
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chapter 4

Computational statistical methods

In this chapter I present my contributions to new computational statistical methods. This
chapter refers to the published papers [P5], [P6], [P7] and to the submitted papers [S2] and [S3].
In the first section, the paper [P5] presents a new method to detect heterogeneity for time to
event data using breakpoint models. In paper [P6] the adaptive ridge algorithm of [RME12]
and [FN16] is extended to the survival analysis context. This algorithm has then been used as a
regularisation method in [S2] where the hazard is computed as a bi-dimensional function. When
using the Cox model, it can also be used to model the baseline hazard function as a piecewise
constant function with automatic choice of the cuts. This is especially useful when dealing
with complex type of data. This is the purpose of [S3] which deals with interval censored data.
Finally, the paper [P7] discusses risk predictions for developing genetic diseases when taking
into account the family history. This article extends classical methods by taking into account
the competing risk of death which is not negligible when dealing with diseases with possibly late
age at onset such as cancer diseases.

4.1 Heterogeneity in survival analysis

Heterogeneity in survival analysis arises when the observed covariates do not properly account
for all the variability in the survival distribution. This might typically be due to unobserved
covariates or to individual specific variability such as it occurs in clustered data. In the latter
case, a popular approach is to use frailty models which incorporate a random e�ect to capture
individual variations. In this model, groups appartenance are known and the group e�ects are
modelled through the random e�ect. A similar approach in an unsupervised context is the cure
model, which assumes that the population is composed of two groups: the susceptibles which are
at risk of developing the event and the non susceptibles which will never experience the event.
While theses models have proved to be most useful, it is however likely that unaccounted latent
heterogeneity remains in the survival signal. This might be due for example to an unknown
interaction between a treatment and some exposure, or to some unaccounted heterogeneity of
the disease itself (for example an unknown cancer sub-type). For instance, age at diagnosis might
be associated with a higher chance to receive a new treatment or BMI might be associated with
a specific exposure.

In [P5], we suggested a new approach considering survival heterogeneity as a breakpoint
model in an ordered sequence of survival responses. The survival responses might be ordered
according to any numerical covariate (ties are possible) like age at diagnosis, BMI, etc. The
basic idea being that heterogeneity will be detected as soon as it is associated with the chosen
covariate. From a statistical point of view we consider this situation as a change-point model
where abrupt changes occur in terms of baseline hazard rates and/or in terms of proportional
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4.1. Heterogeneity in survival analysis

factors. In such a model, we aim at two objectives: first we want to estimate the hazard rates and
the proportional factors in each homogeneous region through a Cox model considering parametric
baseline hazards or a nonparametric baseline hazard. Secondly, we want to accurately provide
the number and location of the breakpoints. A constrained Hidden Markov Model (HMM)
method was suggested in the context of breakpoint analysis by [LRN13]. This method allows
to perform a full change-point analysis in a segment-based model (one parameter by segment)
providing linear EM (see [DLR77]) estimates of the parameter and a full specification of the
posterior distribution of change points. In paper [P5] we adapted this method to the context of
survival analysis with hazard rate estimates, where the estimation is performed through the EM
algorithm to provide update of the estimates and the posterior distribution at each iteration
step.

We suppose that the population is composed of K segments such that for i = 1, . . . , n, Ri œ
{1, 2, . . . , K} and Ri represents subject segment allocation. The Ris are unobserved meaning
that we do not know in advance the segment allocations. Without loss of generality, we also
assume that the Ris are ordered. For example, if the population is a mixture of three sub-
populations such that we have n = 10 and two breakpoints occurring after positions 3 and 7
then R1:10 = 1112222333. Following the notations from the Introduction section, the model is
defined as

E[dNú(t)|Y ú(t), X, R] = Y ú(t)
Kÿ

k=1
⁄k(t) exp(X—k)I(R = k)dt,

where the ⁄k represent unknown baseline hazard functions and the —k unknown regression
parameters associated to each segment index. Therefore we assume Cox models on each unob-
served segment, where baselines and/or regression coe�cients can di�er on each segment. Let
�k(t) =

s t
0 ⁄k(s)ds represents the cumulative baseline hazard function of the kth segment index.

We denote by ◊ = (�1, . . . , �K , —1, . . . , —K) the model parameter to be estimated.
In this model, the contribution of the ith individual to the likelihood ei(k; ◊) can be easily

computed. From standard arguments on likelihood constructions in the context of survival
analysis, see for instance [ABGK93], we have under independent and non informative censoring:

log ei(k; ◊) =
⁄ ·

0

)
log

!
⁄k(t)

"
+ Xi—k

*
dNi(t) ≠

⁄ ·

0
Yi(t)⁄k(t) exp(Xi—k)dt,

where the equality holds true up to a constant that does not depend on the model parameter ◊.
Since the segment indexes are not observed, standard likelihood approaches cannot be directly
implemented. To overcome this problem, an Expectation-Maximisation (EM) algorithm pro-
cedure is used. It consists in performing alternatively until convergence the following two-steps.

Expectation Step: compute the conditional expected log-likelihood,

Q(◊|◊old) =
⁄

R1:n
P(R1:n|data; ◊old) logP(R1:n, data; ◊)dR1:n

where ◊old denote the previous value of the parameter and data = (T1:n, �1:n, X1:n).

Maximisation Step: update the parameter with

◊̂ = arg max
◊

Q(◊|◊old).
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Assuming that the prior segmentation distribution P(R1:n; ◊) does not depend on ◊, it can be
shown that:

Q(◊|◊old) =
nÿ

i=1

Kÿ

k=1
wi(k; ◊old) log ei(k; ◊)

where for any i œ {1, . . . , n}, k œ {1, . . . , K} and ◊ we define:

wi(k; ◊) = P(Ri = k|data; ◊).

In order to perform the E step we therefore need to compute the weights wi(k; ◊). This is
achieved using Hidden Markov Models theory with the additional constraint that Rn = K. We
start by choosing a prior: ÷i(k) = P(Ri = k+1|Ri≠1 = k), such as a uniform prior. Introduce for
all i œ {1, . . . , n} and k œ {1, . . . , K}, Fi(k; ◊) = P(data1:i, Ri = k; ◊) and Bi(k; ◊) = P(datai+1:n,
Rn = K|Ri = k; ◊) the forward and backward quantities. These quantities can be computed
recursively using the following formulas:

Fi(k; ◊) = Fi≠1(k ≠ 1; ◊)÷i(k ≠ 1)ei(k; ◊) + Fi≠1(k; ◊)(1 ≠ ÷i(k))ei(k; ◊), (4.1)
Bi≠1(k; ◊) = (1 ≠ ÷i(k))ei(k; ◊)Bi(k; ◊) + ÷i(k)ei+1(k + 1; ◊)Bi(k + 1; ◊), (4.2)

and we can derive from them posterior distributions of interest:

P(Ri = k|data; ◊) = wi(k; ◊) Ã Fi(k; ◊)Bi(k; ◊), (4.3)

P(BPk = i|data; ◊) Ã Fi(k; ◊)÷i+1(k)ei+1(k + 1; ◊)Bi+1(k + 1; ◊), (4.4)

where {BPk = i} = {Ri = k, Ri+1 = k + 1}. It is hence clear that Equation (4.3) allows to
compute the marginal weights used in the EM algorithm while Equation (4.4) gives the marginal
distribution of the kth breakpoint. Note that the full posterior segmentation distribution can be
proved to be an heterogeneous Markov chain which transition can be derived immediately from
Equations (4.3) and (4.4) (see [LRN13] for more details).

Next, by observing that the quantity Q(◊|◊old) corresponds to a weighted Cox likelihood,
the maximisation step can be performed using Newton-Raphson algorithm in the usual way.

Finally, the number of segments is determined from a Bayesian Information Criteria (BIC).
Note that the likelihood can also be derived from the forward-backward quantities and for any
i œ {1, . . . , n} as:

P(data|◊) =
q

R1:n P(data, R1:n, Rn = K|◊)
q

R1:n P(R1:n, Rn = K|◊) =
qK

k=1 Fi(k; ◊)Bi(k; ◊)
qK

k=1 F 0
i (k)B0

i (k)
,

where F 0 and B0 are obtained through recursions (4.1) and (4.2) by replacing all ei(k; ◊) by 1.
These quantities depend only on ÷, n and K, thus they do not need to be updated during the
EM algorithm. The BIC is computed using the likelihood from the previous formula.

The method is illustrated on the Steno Memorial hospital dataset from [ABGK93]. These
data concern diabetic patients and the time to event of interest is the time from diagnosis
to death. These data are left-truncated as individuals did not reach the hospital directly after
being diagnosed of diabetes and a diabetic patient that died before being included in the hospital
dataset will never be observed. Nevertheless, our method easily accommodates for left truncation
by modifying the at risk process in the weighted log-likelihood function Q. From the BIC
the model with two breakpoints is chosen. The marginal distribution of the breakpoints were
computed using Formula (4.4); the modes are located at years 1948 and 1962. Weighted Kaplan-
Meier curves were also plotted, using the weights wi(k; ◊̂) obtained at convergence of the EM
algorithm. All these plots are displayed in Figure 4.1.
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Figure 4.1: Marginal distribution of breakpoints in the Danish diabetes dataset on the left panel.
The modes are located in 1948 and 1962. Weighted Kaplan-Meier estimators in the models with
two breakpoints in the Danish diabetes dataset on the right panel.

4.2 The adaptive ridge method for piecewise constant hazard in
survival analysis

In survival analysis, when interest lies on the estimation of the hazard rate, an attractive and
popular model is the piecewise constant hazard (pch) model. This model is easy to interpret
as the hazard rate is supposed to be constant on some pre-defined time intervals and plotting
the hazard rate gives a quick sense of the evolution of the event of interest through time. Many
epidemiological studies use this model to represent the hazard rate function either because it
provides an interesting way to fit the hazard function or because the data are not available on
the individual level.

While this model can be used in a nonparametric setting, it is often used in combination
with covariates e�ects. This is the case for instance for the so called Poisson regression model
(see [CH93] or [ABG08]) which assumes a proportional e�ect on the covariates and a piecewise
constant hazard model for the baseline hazard. This model is widely used in practice typically
when dealing with register data.

When modelling covariates e�ect through a proportional hazard model, the Cox model al-
lows the baseline to stay unspecified. Through the Cox partial likelihood the regression e�ect
can be estimated separately from the baseline. While this is a very interesting aspect of the Cox
model, this nice separation between baseline estimation and regression e�ect estimation does
not hold anymore in many extensions of this model. For instance, in frailty models (see among
many other authors [Cla78], [Hou95], [TG00] and [RP00]) keeping a non-parametric baseline
makes the estimation method much more complicated since baseline and regression paramet-
ers must be estimated simultaneously. In the joint modelling framework where one wants to
model the association between a longitudinal variable and a time to event response through a
random e�ect (see [TD04], [Riz12]), only parametric baseline functions are implemented in the
widely used jm R package (see [Riz10]). As a matter of fact, the author in [Riz12] recommends
either to use the piecewise constant baseline hazard or a spline basis baseline hazard which he
says “often work quite satisfactorily in practice” (see page 53 of the book). The frailtypack R
package (see [RMG12]) deals with more survival analysis situations involving a random e�ect
such as nested frailty models (see [RFJ06]) or joint inference of recurrent and terminal events
(see [RMPJG+07]). In this package, the possible baseline hazard functions are the piecewise
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constant hazard, Weibull hazard and spline functions. However the use of spline baseline func-
tions requires to specify in advance the number of knots used in the estimation and therefore
can be seen as a smoothed version of the piecewise constant hazard functions where one must
choose in advance the number of cuts.

Other contexts where the partial likelihood approach does not work anymore include the
cure models framework (see for instance [Far82a] and [ST00]) and the analysis of interval-
censoring data (see [Sun07] for instance). In the latter case, the nonparametric maximum
likelihood estimator for the cumulative hazard or the survival function is known to be slow with
a convergence rate of order n≠1/3 and the limiting distribution is not Gaussian (see [GW92b]
for current status data and [Gro96] for case II intervals censored data). This problem pertains
in the regression framework (see sections 5.2.3 and 6.2.2 in [Sun07] for instance). On the other
hand, using parametric baseline functions such as the piecewise hazard functions allows to obtain
classical parametric rate of convergence and makes the estimation procedure much more stable.

In our paper [P6], we only considered a setting without covariates and the aim was to
estimate the baseline hazard function in a piecewise constant hazard model in the situation of
right-censored data. We proposed a new method to automatically find the appropriate number
and location of the cuts used in this model. Our algorithm is based on the works from [RME12]
and [FN16] where starting from a large set of possible cut points an L0 penalty on the likelihood
of the model forces many successive cuts to be equal providing a parsimonious estimate of the
hazard function. The procedure is data-driven and inference taking into account both the
variability from the estimates and the cut points positions can be derived. This penalised
algorithm has also been applied to the context of age-period-cohort estimation in [S2] and to
the interval-censoring problem in [S3].

4.2.1 The adaptive ridge algorithm in the absence of covariates

In this section we briefly explain how this adaptive ridge estimator works when there are no
covariates available. More details can be found in [P6].

First, the hazard function is assumed to be piecewise constant on K cuts represented by
c0, c1, . . . , cK , with the convention that c0 = 0 and cK = +Œ. Let Ik(t) = I(ck≠1 < t Æ ck). We
suppose that

⁄(t) =
Kÿ

k=1
Ik(t) exp(ak),

for k = 1, . . . , K. Note that the exponential baseline hazard is obtained from K = 1 in the
piecewise constant hazard family. Denote by a = (a1, . . . , aK) the model parameter we aim to
estimate and let Ln(a) = log

rn
i=1 P[Ti, �i; a] represents the log-likelihood of the model. We

have:

Ln(a) =
nÿ

i=1

I

log
!
⁄(Ti)

"
�i ≠

⁄ Ti

0
⁄(t)dt

J

,

where the equality holds true up to a constant that does not depend on the model parameter
a. For computational purpose, it is interesting to note that the log-likelihood can be written
in a Poisson regression form. Introduce Ri,k = I(Ti Ø ck≠1)(ck · Ti ≠ ck≠1), the total time
individual i is at risk in the kth interval (ck≠1, ck], Oi,k = Ik(Ti)�i, the number of events for
individual i in the kth interval. Also Rk =

qn
i=1 Ri,k and Ok =

qn
i=1 Oi,k are su�cient statistics

and estimation can be carried out using only these two statistics. The log-likelihood can then
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4.2. The adaptive ridge method for piecewise constant hazard in survival analysis

be written again as (see [ABG08] p.223-225 for more details):

Ln(a) =
Kÿ

k=1
{Okak ≠ exp(ak)Rk} . (4.5)

Since Ln is concave, the maximum likelihood estimator has an explicit solution, obtained by
maximisation of the log-likelihood: for l = 1, . . . , L,

âk = log
3

Ok

Rk

4
· (4.6)

Now, we aim at using this estimator in the case where the number of cuts and their locations
are unknown. We start with a large grid of cuts and we propose a penalised version of the
piecewise constant hazard (pch) model which allows to simultaneously determine the locations
of the cuts and the estimated values of the âks. Based on the work from [FN16], we propose the
following penalised log-likelihood:

Lpen
n (a, w) =

Kÿ

l=1
{Okal ≠ exp(ak)Rk} ≠ pen

2

K≠1ÿ

l=1
wk(ak+1 ≠ ak)2,

where w = (w1, . . . , wK≠1) are non-negative weights that will be iteratively updated in order
for the weighted ridge penalty term to approximate the L0 penalty. The penalisation term
is designed to force consecutive values of the aks to be close to each other. The pen term
is a tuning parameter that describes the degree of penalisation. Note that the two extreme
situations pen = 0 and pen = Œ respectively correspond to the unpenalised log-likelihood
model of Equation (4.5) and to the exponential model.

The score vector is denoted U(a, w) = ˆLpen
n (a, w)/ˆa and its kth component, k œ {1, . . . , K},

is equal to:

Ok ≠ Rk exp(ak) + (wk≠1ak≠1 ≠ (wk≠1 + wk)ak + wkak+1)pen,

with the convention w0 = wK = a0 = aK+1 = 0. Now introduce I(a, w) = ≠ˆU(a, w)/ˆaT , the
opposite of the Hessian matrix. I(a, w) is a K ◊ K non-negative definite band matrix whose
bandwidth equals 1. Its diagonal elements are equal to

I(a, w)k,k = Rk exp(ak) + (wk≠1 + wk) pen,

other elements next to the diagonal are defined for k = 1, . . . , K ≠ 1 by

I(a, w)k,k+1 = I(a, w)k+1,k = ≠wk pen,

and all other elements are equal to zero, that is for k, kÕ such that |k ≠ kÕ| Ø 2, I(a, w)k,kÕ = 0.
The vector parameter a is updated using the Newton-Raphson algorithm. For a given

sequence of weights w(m≠1) obtained at the (m ≠ 1)th step, the mth Newton Raphson iteration
step is obtained from the equation

a(m) = a(m≠1) + I(a(m≠1), w(m≠1))≠1U(a(m≠1), w(m≠1)). (4.7)

The inversion of the band matrix is performed through a fast (linear complexity) C++ imple-
mentation of the well-known LDL algorithm (variant of the LU decomposition for symmetric
matrices). The complexity of this inversion is O(K). Initialisation of the Newton-Raphson
algorithm can be obtained from the classical unpenalised estimator of the piecewise constant
hazard model, that is a(0) = arg maxa Ln(a).
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Once the Newton-Raphson algorithm has reached convergence, the weights are updated at
the mth step from the equation

w(m)
l =

1
(a(m)

k+1 ≠ a(m)
k )2 + Á2

2≠1
,

for k = 1, . . . , K ≠ 1 with Á = 10≠5 and where the a(m)
k s represent the estimates of the aks

obtained through the Newton-Raphson algorithm. This form of weights is motivated by the fact
that wk(ak+1 ≠ak)2 is close to 0 when |ak+1 ≠ak| < Á and close to 1 when |ak+1 ≠ak| > Á. Hence
the penalty term tends to approximate the L0 norm. The weights are initialised by w(0)

k = 1,
which gives the standard ridge estimate of a.

Finally, for a given value of pen, once the adaptive ridge algorithm has reached convergence,
a set of cuts is found for the aks verifying |ak+1 ≠ ak| > Á. The non-penalised log-likelihood
Ln is then maximised using this set of cuts and the final estimate is derived from Equation
(4.6). It is important to stress that the penalised likelihood is used only to select a set of
cuts. Reimplementing the non-penalised estimator in the final step enables to reduce the bias
classically induced by penalised maximisation techniques (for more details about the adaptive
ridge procedure see [RME12] or [FN16]).

For a given penalty value, the algorithm can be summarised by the following steps:

Step 0. Initialise the weights to w(0)
k = 1, and initialise the hazard values from the unpenalised

estimator, a(0) = arg maxa Ln(a). Set m = 1 and sel1k = 0.

Step 1. Compute the penalised estimator a(m) from the Newton-Raphson algorithm (4.7). After
convergence go to the next step.

Step 2. Update the weights: w(m)
k =

1
(a(m)

k+1 ≠ a(m)
k )2 + Á2

2≠1
, k = 1, . . . , K ≠ 1. Define sel(m)

k =

w(m)
k (a(m)

k+1 ≠ a(m)
k )2:

- If maxk |sel(m)
k ≠ sel(m≠1)

k | > 10≠5, set m = m + 1 and go to Step 1.

- If maxk |sel(m)
k ≠ sel(m≠1)

k | < 10≠5, select all the cks for which sel(m)
k > 0.99. Exit the

algorithm.

This algorithm provides a selection of the cuts. From these cuts, an unpenalised estimator â
is implemented from Equation (4.6). Then a Bayesian Information Criteria (BIC) is calculated
using the following formula:

BIC = ≠2Ln(â) + Kú log(n),

where Kú =
q

k I(sel(m)
k > 0.99) represents the dimension of the selected model. From a large

grid of penalty values, the procedure is iterated and the penalty is chosen as the one that
minimises the BIC. An important feature of the procedure is to use a warm start when the
penalty value changes. At the beginning of the algorithm, the term a(0) should be initialised
from the estimator obtained at the previous value of the penalty. Using this warm start ensures
the algorithm to converge very quickly when the number of selected cuts does not change for a
new penalty. As a result, the global algorithm takes most of its time for the first penalty value.

Finally, we briefly illustrate how to take into account the uncertainty in the choice of the
cut points and in the estimated values in the construction of pointwise confidence intervals.
This methodology is performed for the estimation of the survival function on a single data
example of size n = 100 with 38% of censoring. We use a resampling technique where for each
sample a di�erent penalty term can be chosen from the BIC. This provides a new hazard and
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4.2. The adaptive ridge method for piecewise constant hazard in survival analysis

survival estimates with a di�erent set of cut points for each sample. Taking the quantiles of
order 0.025 and 0.975 at each time point allows us to obtain 95% pointwise confidence intervals
for the survival function. Interestingly, this resampling technique also allows us to compute an
alternative pointwise estimate of the survival function by taking the pointwise medians of each
bootstrap sample. This provides a very smooth estimate function and, in that sense, this kind of
estimate can be seen as a smooth non-parametric estimate of the survival function. Following this
methodology, the survival curve is plotted in Figure 4.2 along with its 95% pointwise confidence
interval from 100 bootstrap samples. Our method shows very little di�erence from the classical
Kaplan-Meier estimate and its pointwise confidence interval. Interestingly, our survival estimator
and its pointwise confidence intervals have a smooth shape in contrast with the stepwise shape
of the Kaplan-Meier estimator.

The regularisation path of the adaptive ridge estimator is illustrated on the more specific
setting of age-period-cohort analysis (see [S2]). In this work, a ridge alternative of the algorithm
is also implemented which is based on the adaptive ridge algorithm with the weights wk simply
equal to 1.
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Figure 4.2: Estimates of the survival function. Dashed line: Kaplan Meier estimator along with
its 95% pointwise confidence interval (dotted lines). Solid line: bootstrapped adaptive ridge
estimator along with its 95% pointwise confidence interval (dot dash lines).

4.2.2 Extensions of age-period-cohort models

In epidemiological or demographic studies, with variable age at onset, individuals are recruited
and followed-up during a long period of time, usually from birth. The data are then reported in
the form of registers which contain the number of observed cases and the number of individuals
at risk to contract a disease. These types of studies are of great interest for the statistician,
especially when the event of interest will tend to occur at late ages, such as in cancer studies.
However, these data are usually highly heterogeneous in terms of dates of birth and with respect
to the calendar time. In such cases, it is therefore very important to take into account the
variability of the age, the cohort e�ect (date of birth) and the period e�ect (the calendar time)
in the hazard rate estimation. This is usually done using age-period-cohort estimation methods
(see [YL13] and citations therein).
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Figure 4.3: Lexis diagram. Age-Period diagram on the left panel and Age-Cohort diagram on
the right panel.

In Figure 4.3 we see a typical Lexis diagram in the age-period or age-cohort plane. From
this figure, one can discretise the hazard rate in JK intervals for example as

log
!
⁄(age, cohort)

"
=

Jÿ

j=1

Kÿ

k=1
÷j,kI(cj≠1 Æ age < cj , dk≠1 Æ cohort < dk), (4.8)

where the cjs are the age intervals, the dks the cohort intervals and the ÷j,k are parameters to
be estimated. The formula could be alternatively written as a function of age and period or as a
function of cohort and period. In standard age-period-cohort analysis, there are three di�erent
e�ects of interest: the age e�ect –j , the cohort e�ect —k and the period e�ect “j+k≠1. However
fitting a model with all three e�ects such as

÷j,k = µ + –j + —k + “j+k≠1,

will clearly induce identifiability issues due to the relationship: period=age+cohort. As a con-
sequence, [OG82] have proposed to fit each sub-model (age-cohort, age-period and period-cohort)
and to use a weighting procedure to combine the three models. Di�erent constraints have
also been proposed to make the age-period-cohort model identifiable. However, as noticed by
[Heu97], the obtained estimates highly depend on the choice of the constraints. [Hol83] pro-
posed to directly estimate the linear trends of each e�ect but this procedure leads to results that
are di�cult to interpret. See [Car07] for a detailed discussion of the identifiability problem of
the age-period-cohort model. Another method where the second order derivatives of the three
e�ects are estimated is implemented in the apc package from [Nie15]. Finally, in the epi R
package the method from [CPLH18] is implemented, where one submodel (say age-cohort) is fit
and the period e�ect over the residuals of the first model is then implemented. Again, all these
approaches lead to results that can be hard to interpret.

In [S2] we considered the nonparametric approach where the hazard rate is simply a bivariate
function of either age-cohort, age-period or period-cohort with no specific structure of the hazard
being assumed. Inference is made in two dimensions, but through the linear relationship period
= age + cohort, the hazard rate can be represented as a function of any two of the three
variables. Of course, for moderate sample sizes, these kind of approaches will su�er from over-
parametrisation. As a consequence, regularised methods have been proposed in order to avoid
overfitting in this non-parametric context. A kernel-type estimator was proposed by [Ber81]
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4.2. The adaptive ridge method for piecewise constant hazard in survival analysis

and [MU90] where the cumulative hazard is smoothed using a kernel function. See [Kei90] for a
thorough discussion of methods for hazard inference in age-period-cohort analysis. In our work,
the adaptive ridge algorithm presented in Section 4.2.1 is used to take into account the issue of
overfitting. This method results in a nice segmentation of the hazard rate into constant areas.

By convention, we consider the age-cohort Model (4.8). As previously, we introduce the
su�cient statistics Oj,k which represents the number of observed events in the rectangle (j, k)
and Rj,k which represents the total time at risk spent in the rectangle (j, k). The log-likelihood
is then equal to:

¸n(÷) =
Jÿ

j=1

Kÿ

k=1
{Oj,k÷j,k ≠ exp(÷j,k)Rj,k} ,

and the maximum likelihood estimator is equal to

÷mle
j,k = log

A
Oj,k

Rj,k

B

.

In this model there are JK parameters that need to be estimated which will usually lead to
overfitting issues. We therefore consider the penalised log-likelihood

¸pen
n (÷) = ¸n(÷) ≠ pen

2

I
ÿ

j,k

vj,k (÷j+1,k ≠ ÷j,k)2 + wj,k (÷j,k+1 ≠ ÷j,k)2
J

,

where v and w represent weights and pen is a tuning penalty term. Again, maximisation of
the penalised likelihood is performed using the Newton-Raphson algorithm but this time the
complexity for the inversion of the Hessian matrix is O(min(J, K)). This should be compared
to a full rank Hessian matrix whose complexity would be O(J2K2). In the algorithm, the
bi-dimensional segmentation is performed by representing the connex components induced by
the values of vj,k (÷j+1,k ≠ ÷j,k)2 and wj,k (÷j,k+1 ≠ ÷j,k)2. Figure 4.4 shows how the connex
components graph is constructed.
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Figure 4.4: Representation of vj,k (÷j+1,k ≠ ÷j,k)2 and wj,k (÷j,k+1 ≠ ÷j,k)2 on the left panel where
empty circles correspond to the value 0 and filled circles correspond to the value 1; corresponding
graph on the middle panel and segmentation through connected components on the right panel.

Once the segmentation is chosen, the unpenalised estimator is implemented using the chosen
segmentation. The two regularisation paths for the whole algorithmic procedure (choice of the
segmentation and computation of the final estimator) are illustrated on Figure 4.5 for the ridge
estimator (with weights vj,k and wj,k equal to 1) and for the adaptive ridge estimator. We see
in particular that, as the value of pen increases, the number of constant areas for the adaptive
ridge decreases. Both methods converge to the same constant estimator as pen tends to infinity.
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Figure 4.5: Regularisation path for the ridge algorithm on the left panel and for the adaptive
ridge algorithm on the right panel.

Finally the penalty term is chosen using the Extended Bayesian Information Criterion
(EBIC). This criterion is more parsimonious than the standard BIC, see [CC08] for more details
about the EBIC.

The method is illustrated on simulated data according to a piecewise constant hazard rate.
The left top panel of Figure 4.6 shows the true hazard in the age-cohort pane, with four distinct
regions. We considered three di�erent estimators of this hazard from samples of size 4 000. The
estimators were replicated 500 times and the median of these replications are displayed in Figure
4.6. The age-cohort model

÷j,k = µ + –j + —k,

is implemented on the top right panel. This estimator is shown to be highly biased due to
the constraints imposed by the model. The lower left and right panels respectively show the
ridge (with vj,k = wj,k = 1 for all j, k) and adaptive ridge estimates. They both show a good
performance of the estimators, in particular the shape of the hazard is correctly captured by the
adaptive ridge estimator.

The method is also illustrated on the Surveillance, Epidemiology, and End Results (SEER)
dataset which is publicly available from the US National Cancer Institute. SEER collects medical
data of cancers (including stage of cancer at diagnosis and the type of tumour) and follow-up
data of patients in the form of a registry. Around 28 percent of the US population is covered by
the program. The registry started in February 1973 and the available current dataset includes
follow-up data until January 2015. In this study the duration of interest T ú is the time from
breast cancer diagnosis to death in years, the cohort is the date of diagnosis (in years) and the
period is the calendar time (in years). Patients continuously entered the study between 1973 and
2015 and right-censoring occurred for patients that were still alive at the end of follow-up or for
those that were lost to follow-up. For the sake of comparison, the subsample of malignant, non-
bilateral breast tumour cancers was extracted from the dataset, such that the data comprises
1 265 277 individuals with 60 percent of censored individuals. Observed times from diagnosis to
death vary between 0 and 41 years, and the dates of cancer diagnosis vary between 1973 and
2015.

The adaptive ridge estimates for the whole sample and for each cancer stage are displayed
in Figure 4.7. We can see that the di�erent stages of cancer at diagnosis have a considerable
impact on the survival times. For stage 1 cancers, the hazard is low few years after diagnosis,
and steadily increases with time. There seems to be no e�ect of the date of diagnosis. On the
opposite, for stage 2 cancers, a strong e�ect of the date of diagnosis can be noticed. Around the
years 1995 ≠ 1997, the hazard rate is seen to considerably decrease which could correspond to a
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Figure 4.6: Piecewise constant true hazard and corresponding estimates. The sample size is
4 000 and the median hazard is taken over 500 simulations. The estimations are performed in
the age-cohort plane and with di�erent methods. Figure (a) represents the true hazard used
to generate the data, Figure (b) represents the hazard estimated using the age-cohort model,
Figure (c) represents the ridge estimate and Figure (d) represents the adaptive ridge estimate
obtained using the EBIC criterion.
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Figure 4.7: Estimated hazard of survival time after diagnosis of breast cancer for di�erent stages
of cancer using the adaptive ridge estimator.
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medical improvement for the treatment of breast cancer in the United States. Finally, the figure
for stage 3 cancers displays a very high hazard rate across all dates of diagnosis. From these
plots we can conclude that the evolution in treatments of breast cancer had a significant impact
on the survival times after diagnosis, but almost exclusively when cancers were diagnosed at
stage 2.

4.2.3 Interval censoring with a cure fraction

In our work [S3] we studied interval-censored data such as defined in Section 2.4.1. We present
a model that also allows for a cure fraction, that is there exists a subpopulation that cannot
experience the event of interest. Cure models were initially introduced by [Far82b] and then
further studied by [ST00] and [PD00]. They attempt to address estimation issues when the data
have typically heavy censoring at the end of the follow-up period. In [ST00] and [PD00], the cure
model was extended to a Cox proportional modelling of the latency part, with a nonparametric
baseline. However, as explained in [ST00] for instance, identifiability issues can occur which
are circumvented by imposing the survival function of the susceptible group to reach 0 at the
last observed failure time. This condition is arbitrary and unnecessary for parametric baselines.
In [S3] we consider a cure model for the mixed case of exact, left censored, right censored and
interval censored data and we avoid the zero-tail constraint by using the piecewise constant
baseline hazard and the adaptive ridge algorithm presented in Section 4.2.1.

We introduce the susceptibility status as the variable Y which equals 1 for patients that will
eventually experience the event and 0 for patients that will never experience the event. The
probability of being susceptible is equal to p = P[Y = 1]. For a right censored individual, Y is
not observed. The marginal survival function of T ú is S(t) = (1 ≠ p) + pS(t|Y = 1) for t < Œ,
where S(t|Y = 1) is the survival function of the susceptibles. Note that S(t) æ 1 ≠ p as t æ Œ.
We assume an independent, non informative, random censoring model and that censoring is
statistically independent of Y . We then assume the following Cox proportional hazard model
for the time variable T ú:

⁄(t|Y = 1, Z) = ⁄0(t) exp(—0Z),

where Z is a covariate vector and —0 an unknown row parameter vector, both of dimension dZ .
The PH cure model specifies the hazard, conditional on Y and Z, to be equal to ⁄(t|Y, Z) =
Y ⁄(t|Y = 1, Z). As in Section 4.2.1, we model the baseline function through a piecewise constant
hazard function. For k = 1, . . . , K,

⁄0(t) =
Kÿ

l=1
Ik(t) exp(ak),

with Ik(t) = I(ck≠1 < t Æ ck) defined as previously. Under this model, note that the survival
and density of the susceptible individuals are respectively equal to:

S(t|Y = 1, Z) = exp
1

≠
Kÿ

l=1
eak+—0Z(t · ck ≠ ck≠1)I(ck≠1 Æ t)

2
,

f(t|Y = 1, Z) =
Kÿ

l=1
Ik(t) exp

1
ak + —0Z ≠

kÿ

j=1
eaj+—0Z(t · cj ≠ cj≠1)

2
.

The nonparametric situation is encompassed in our modelling approach as the special case where
Z = 0. The case of only susceptible individuals corresponds to p = 1.
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In the regression framework, a logistic link is used to model the probability of being suscept-
ible with respect to some covariates X. Let

p(X) = P[Y = 1|X] = exp(“0X)
1 + exp(“0X) ,

where X is a covariate vector including the intercept and “0 is a row parameter vector, both of
dimension dX .

The observed data consist of (Li, Ri, ”i, Zi, Xi) for i = 1, . . . , n while T ú

i and Yi are re-
spectively incompletely observed and non observed data. We set ◊ the model parameters we
aim to estimate. In the following we will either study the non-parametric context when there
are no covariates, in which case ◊ = (a1, . . . , aL, —, p), or the regression context in which case
◊ = (a1, . . . , aL, —, “). In the regression context, we introduce the notations pi = P[Yi = 1|Xi]
and ai,k = ak + —Zi.

As presented in Section 2.4.2, there is an explicit representation of the observed likelihood
that can be maximised with respect to the model parameters using the Newton-Raphson al-
gorithm. However, in this optimisation problem, the block of the Hessian matrix corresponding
of the baseline coe�cients a1, . . . , aK will be of full rank and can lead to intractable solutions
if the number of cuts K is large. An alternative is therefore to use the EM algorithm based
on the complete likelihood of the unobserved true event times and susceptibility status. This
algorithm will result into a diagonal block matrix of the baseline coe�cients. Combined with
the adaptive ridge algorithm, this will lead to a tractable maximisation problem where the cuts
will be automatically chosen by the procedure and estimation performed with the chosen cuts.

The complete likelihood is then defined by:

L(◊) =
nŸ

i=1
pYi

i (1 ≠ pi)1≠Yi

nŸ

i=1
{f(T ú

i |Yi = 1, Zi; ◊)}Yi .

Expectation Step:

Denote by ◊old the current parameter value. The E-step takes the expectation of the
complete log-likelihood with respect to the T ú

i s and Yis, given the Lis, Ris, ”is, Zis, Xis
and ◊old. Let fiold

i = E[Yi|data, ◊old]. We have:

fiold
i = ”i + (1 ≠ ”i)poldS(Li|Yi = 1, Zi, ◊old)

1 ≠ pold + poldS(Li|Yi = 1, Zi, ◊old) ·

Then note that

E[log(f(T ú

i |Yi = 1, Zi; ◊))|data, ◊old] =
⁄

f(t|data, ◊old) log f(t|Yi = 1, Zi; ◊)dt

and under the assumption P(T ú œ [L, R]) = 1,

f(t|data, ◊old) = f(t|Yi = 1, Zi; ◊old)I(Li < t < Ri)
S(Li|Yi = 1, Zi, ◊old) ≠ S(Ri|Yi = 1, Zi, ◊old) ·

Maximisation Step:

The M-step consists of maximising the quantity Q(◊|◊old) = ET ú
1:n,Y1:n|data,◊old [log(L(◊))]
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with respect to ◊. In the absence of exact observations, we have:

Q(◊|◊old)

=
nÿ

i=1

Ó
fiold

i log(pi) + (1 ≠ fiold
i ) log(1 ≠ pi)

+
fiold

i

s Ri
Li

f(t|Yi = 1, Zi; ◊old) log f(t|Yi = 1, Zi; ◊)dt

S(Li|Yi = 1, Zi, ◊old) ≠ S(Ri|Yi = 1, Zi, ◊old)

J

=
nÿ

i=1

Ó
fiold

i log(pi) + (1 ≠ fiold
i ) log(1 ≠ pi)

Ô

+
nÿ

i=1

I
fiold

i

S(Li|Yi = 1, Zi, ◊old) ≠ S(Ri|Yi = 1, Zi, ◊old)

◊
Kÿ

k=1
Jk,i

⁄ ck·Ri

ck≠1‚Li

exp
1
aold

i,k ≠
kÿ

j=1
eaold

i,j (t · cj ≠ cj≠1)
21

ai,k ≠
kÿ

j=1
eaj,k(t · cj ≠ cj≠1)

2
dt

J

,

where Jk,i is the indicator I{(Li, Ri) fl (ck≠1, ck) ”= ÿ}. If we include exact data, these
observations will contribute in the same way as in Equation (4.5) for standard pch model
with exact and right-censored data. We will therefore separate the contributions of exact
observations to the contributions of left, interval and right censored data in the expression
of Q. For k = 1, . . . , K, introduce the quantities

Aold
k,i =

exp
1
eaold

i,k ck≠1 + aold
i,k ≠

qk≠1
j=1 eaold

i,j (cj ≠ cj≠1)
2
Jk,i

S(Li|Yi = 1, Zi, ◊old) ≠ S(Ri|Yi = 1, Zi, ◊old)

⁄ ck·Ri

ck≠1‚Li

exp
!

≠ eaold
i,k t

"
dt

= exp
1

≠ eaold
i,k ck≠1 ‚ Li

21
1 ≠ exp

!
≠ eaold

i,k (ck · Ri ≠ ck≠1 ‚ Li)
"2

◊
exp

!
eaold

i,k ck≠1 ≠
qk≠1

j=1 eaold
i,j (cj ≠ cj≠1)

"
Jk,i

S(Li|Yi = 1, Zi, ◊old) ≠ S(Ri|Yi = 1, Zi, ◊old)
and

Bold
k,i =

exp
1
eaold

i,k ck≠1 + aold
i,k ≠

qk≠1
j=1 eaold

i,j (cj ≠ cj≠1)
2
Jk,i

S(Li|Yi = 1, Zi, ◊old) ≠ S(Ri|Yi = 1, Zi, ◊old)
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One should note that the function Q separates the terms with “ (first line of the previous
equation) and the terms involving (a1, . . . , aL, —) (second and last line of the previous equation)
such that maximisation of these terms can be performed separately. In the absence of covariates,
explicit estimators can be derived by maximising the function Q. In the regression framework,
a Newton-Raphson procedure must be used. The Hessian of Q with respect to ◊ is composed
of four block matrices. The block corresponding to the second order derivatives with respect to
the aks is diagonal and the other blocks are of full rank. The adaptive ridge is implemented by
penalising the function Q:

l(◊|◊old) = Q(◊|◊old) ≠ pen
2

K≠1ÿ

k=1
wk(ak+1 ≠ ak)2,

where w = (w1, . . . , wK≠1) are the adaptive weights as defined in Section 4.2.1. The block
matrix of the Hessian of l corresponding to the second order derivatives with respect to the aks
is, this time, tri-diagonal. As a result, the total complexity for the inversion of the Hessian of l
is of order O(K). Nevertheless, for a given penalty, it should be noted that the global algorithm
consists of an EM algorithm with a Newton-Raphson procedure at each step. As a consequence,
a Generalised Expectation Maximisation (GEM) algorithm (see [DLR77]) is used instead of the
standard EM where, as soon as the value of Q increases, the Newton-Raphson procedure is
stopped. This results in computing only a few steps of the Newton-Raphson algorithm (very
often only one step is needed). As the EM algorithm is usually very slow to reach convergence
the turboEM R package is also used to accelerate the EM algorithm (see for instance [VR08]).
Finally, a BIC is implemented from the observed likelihood and the penalty term is chosen as
the one that minimises the BIC.

The method is illustrated on a dental dataset. 322 patients with 400 avulsed and replanted
permanent teeth were followed-up prospectively in the period from 1965 to 1988. The following
replantation procedure was used: the avulsed tooth was placed in saline as soon as the patient
was received at the emergency ward. If the tooth was obviously contaminated, it was cleansed
with gauze soaked in saline or rinsed with a flow of saline from a syringe. The tooth was
replanted in its socket by digital pressure. The patients were then examined at regular visits to
the dentist. In this study, we focused on a complication called ankylosis such that the variable
of interest T ú is the time from replantation of the tooth to ankylosis. 28% of the data were left
censored, 35.75% were interval censored and 36.25% were right censored. Four covariates were
included in the study: the stage of root formation (72.5% of mature teeth, 27.5% of immature
teeth), the length of extra-alveolar storage (mean time is 30.9 minutes), the type of storage
media (85.25% physiologic, 14.75% non physiologic) and the age of the patient (the mean age
for mature teeth is 16.81 years). All the covariates were included in a Cox model. Since age
shows little variation for immature teeth, this last variable was only included in interaction with
the stage of root formation. The data are described in great details in [ABJA95]. There is no
need for a cure fraction in the model, as when implemented on the dataset, the cure fraction is
estimated to 0%. This means that all patients will eventually develop ankylosis, a result that
is supported by clinicians experience. The results are shown in Figure 4.8. The method found
four cuts for the baseline hazard at time points 100, 500, 800 and 900. Statistical tests of the
significance of the variables were implemented from log-ratio tests when assuming the cuts to be
pre determined. It can be seen that the stage of root formation is highly significant with twice
more risk for mature teeth to develop ankylosis. The storage time is also highly significant with
a 1.23 increase of risk per hour. The type of storage media seems to have no e�ect on ankylosis
and age is not significant even at the 10% level. Taking only the significant covariates, survival
curves can be plotted to illustrate the evolution of the risk with respect to time, as shown on
the right panel of Figure 4.8 for mature and immature teeth with 20 minutes of storage time.
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Covariates HR p-value
Mature 2.00 1.89·10≠5

Storage time (hours) 1.23 0.0017
Physiologic 0.93 0.6980

Age>20 (mature teeth) 1.27 0.1272
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Figure 4.8: On the left panel, regression modelling of time to ankylosis on the dental dataset
(HR: Hazard Ratio). The adaptive ridge found four cuts for the baseline hazard at times 100,
500, 800 and 900. On the right panel, estimates of the survival function from the reduced
regression model with covariates: stage of root formation (mature/immature) and storage time.

This plot illustrates another interesting feature of the adaptive ridge procedure: by selecting a
parsimonious set of cuts, the method highlights the di�erent regions of time where the risk of
failure varies. There is in particular a very high risk of ankylosis before 100 days as shown by the
very steep survival curve. The survival after 100 days is estimated to 70.4% for the immature
teeth and to 47.4% for the mature teeth. Then the risk decreases from 100 days to 500 days,
with the survival after 500 days estimated to 60.8% for the immature teeth and to 34.8% for
the mature teeth and finally the risk gets very low after 500 days.

4.3 Accounting for the competing risk of death in genetic stud-
ies

Complex diseases with variable age at onset typically have many interacting factors such as
the age, lifestyle, environmental factors, treatments, genetic inherited components. The genetic
component is generally composed of one or several genes including major genes for which a dele-
terious mutation rises significantly the risk of the disease and/or minor genes which participation
in the disease is moderate by itself.

The mode of inheritance can be monogenic if a mutation in a single gene is transmitted or
polygenic if mutations in several genes are transmitted. As an example of a major gene in a
complex disease, the BRCA1 gene is well known to be strongly correlated with ovarian and breast
cancer since the 90s [HNM+90] ,[CRT94]. Carriers of a deleterious mutation in BRCA1 gene
have a much higher risk to be a�ected with relative risks ranging from 20 to 80 but deleterious
mutations in BRCA1 gene only explain 5 to 10 % of the disease [MA16] as many other implicated
known or unknown genes exist along with sporadic cases (cases with no inherited component).

The family history (FH) of such diseases is often the first tool for clinicians to detect a family
of carriers of a deleterious mutation as any unusual accumulation of cases in relatives leads to
suspect a deleterious allele in the family. With the appropriate model and computation, the FH
can be used to better target the most appropriate individuals for a genetic testing and/or to
identify high-risk individuals who require special attention (monitoring and/or treatments).

The first challenge to compute such a model comes from the fact that genotypes are mostly
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(if not totally) unobserved and that posterior carrier probability computations must sum over a
large number of familial founders’ genotypes configurations. Once such computations are carried
out, deriving posterior individual disease risk is also a challenging task since the posterior carrier
distribution changes over time. Finally, for diseases with possibly late age at onset (e.g. cancer),
the competing risk of death is not negligible and must be accounted for. Classical familial risk
models such as Claus-Easton (see [CRT91], [EBFC93]), BOADICEA (see [APSE04]), or the
BayesMendel models (BRCAPRO, MMRpro, PancPRO and MelaPRO, see [CWL+06]) do not
take into account the competing event of death. As a result, it is likely that individual predictions
will tend to be overestimated from these models (see [DP12]). The main result of our work [P7]
is that we show how to derive individual risk predictions from the family history while taking
into account the competing risk of death.

More precisely, we place ourselves in an illness death situation (since death precludes the
occurrence of the disease but the opposite is not true) such as described in Section 2.2 of the
Introduction. In our context, the event of interest is the age of cancer diagnosis for individual
i, denoted T údis

i while the competing risk of death is denoted T údeath
i . We note FH the family

history of a given patient, which includes the personal history and the genotype of all related
individuals. The personal history comprises information on whether or not the relatives have
yet developed the disease or died. The genotype of the jth relative is represented by Xj œ
{00, 01, 10, 11}. We work under the Claus-Easton model (see [CRT91], [EBFC93]) which assumes
an autosomal dominant mode of inheritance, such that a carrier and a non carrier have genotypes
respectively equal to Xj ”= 00 and Xj = 00. Even with genetic testing, it is essential to
understand that the Xjs are, at best, partially observed. Indeed, even with a (hypothetical
and unrealistic) 100% specificity/sensitivity test, a positive heterozygous carrier status cannot
distinguish between genotypes 01 and 10. Moreover, genetic tests are in general only available
for few individuals in the whole pedigree. Accounting for the unobserved genotypes is therefore
of utmost importance. This is performed using Bayesian network and sum-product algorithms
(see for instance [LS03] or [KF09]). This aspect of our work will not be developed here and we
will only focus on how to perform individual risk predictions from the family history.

Let t0 > 0 be a given time point for which it is known that patient i has not yet developed
the disease and is still alive. We introduce fi = P[Xi ”= 00|FH], where in the notation FH we
have also included the information that T údis

i > t0 and T údeath
i > t0. For any t > t0 we aim

at computing the cumulative incidence of the disease given family history P[T údis
i Æ t|FH]. We

denote the cause specific hazard of the disease in a similar way as in Equation (2.5) but by also
conditioning on the family history:

⁄dis(t) := lim
—tæ0

P[t Æ T údis
i < t + —t|T údis

i Ø t, T údeath
i Ø t, FH]

—t
·

We then model this hazard using a piecewise constant model on the cuts 0 = c0, c1, . . . , cK = +Œ
such as in Section 4.2.1 and we denote by –k the value of the hazard of the disease on the kth
cut (ck≠1, ck]. We also introduce —k := –k +⁄death(ck) where ⁄death is the hazard of death, which
is obtained through register population data. Even though these register data usually contain
informations only on death from all cause, we assume that death without cancer and death from
all cause have a similar hazard. We also assume that the hazard for non carriers individuals
(that is with Xi = 00) and for carriers (that is with Xi ”= 00) are known. These are respectively
denoted ⁄0 and ⁄1 and their all cause survival functions are noted S0 and S1:

⁄0(t) := lim
—tæ0

P[t Æ T údis
i < t + —t|T údis

i Ø t, T údeath
i Ø t, Xi = 00]

—t
,

S0(t) := P[T údis
i · T údeath

i Ø t|Xi = 00] = exp
3

≠
⁄ t

0

!
⁄0(u) + ⁄death(u)

"
du

4
,
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and ⁄1 and S1 are defined similarly by conditioning on Xi ”= 00. Finally, we also note

S(t) := P[T údis
i · T údeath

i Ø t|FH] = exp
3

≠
⁄ t

t0

!
⁄dis(u) + ⁄death(u)

"
du

4
.

In [P7] we showed that given the family history, the cumulative incidence function of the
disease can be computed through the following steps:

1. compute –j = ⁄dis(cj) using the equation

⁄dis(t) = 1
S(t)

C

fi

!
S1(t)

"2

S1(t0) ⁄1(t) + (1 ≠ fi)
!
S0(t)

"2

S0(t0) ⁄0(t)
D

·

2. compute —j = –j + ⁄death(cj) and S—(cj) = exp(≠
qj

l=1(cl ≠ cl≠1)—l).

3. then the marginal posterior probability of being diagnosed with the disease before age ck,
in the presence of death as a competing risk, is given for k = 1, . . . , K by:

P[T dis
i 6 ck|FH] =

kÿ

j=1

–j

—j

1
S—(cj≠1) ≠ S—(cj)

2
.

Finally the di�erence in risk prediction when accounting for the competing risk of death or
when ignoring it is illustrated on an hypothetical example. Figure 4.9 represents an example of
a moderate size (hypothetical) family with a severe history of breast and ovarian cancer. This
family has a total of n = 12 individuals with the set of founders F = {1, 2, 3, 4} and the set of
nonfounders I \F = {5, 6, 7, 8, 9, 10, 11, 12}. There is no inbreeding (mating between individuals
with a common ancestor) in this family but a mating loop (two families joined more than once
by mating) due to the two brothers of the first nuclear family having children with two sisters
of the second nuclear family. The individual risk of breast cancer for individuals 7 and 12 are
represented on Figure 4.10 where we set fi = 0.553% and t0 = 62 years for individual 7 and
fi = 44.6% and t0 = 37 years for individual 12. The risks are plotted for t ranging from t0 to
100 years with and without taking into account the competing risk of death. We can see that
the di�erence between the two curves for each individual is increasing with the age. We also
observe that the individual risk of breast cancer eventually reaches a plateau which corresponds
to the point where the incidence of breast cancer becomes negligible compared to the incidence
of death in the elderly.
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Figure 4.9: An hypothetical family with a severe FH of cancer. Squares correspond to males,
circles to females, and a�ected individual are filled in black. Individual id on the top-right of the
nodes, personal history of cancer (UN=UNa�ected; BC=Breast Cancer; OC=Ovarian Cancer)
on the bottom-right. The dashed line represents an identity link used to represent the mating
loop (due to the mating between individuals 5/8 and 6/7) between brothers 5 and 6, and sisters
7 and 8.
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Figure 4.10: Individual risk of breast cancer with and without the competing risk of death
for individual 7 and 12 of our hypothetical family from · to 100 years with and without the
competing risk of death.
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chapter 5

Applications to medical studies

In this chapter I present my statistical contributions to medical studies. The work in [P8] started
while I was visiting the Biostatistics section at the University of Copenhagen. This work was
in collaboration with the department of Gynecology and Obstetrics at the Hillerød hospital in
Denmark. The aim of the study was to evaluate the e�ect of broad spectrum antibiotics on the
risk of developing type 1 diabetes for children. This was performed from Danish register data
using survival analysis theory. The work in [S4] is also a collaboration with the Biostatistics
section of Copenhagen and it involves the Department of Cardiology at Hvidovre University
Hospital in Copenhagen. The aim was to predict risks of future hospitalisations related to
atrial fibrillation for patients su�ering from this cardiac disease using recurrent event methods.
Finally, in a work with the biology team at Institut de Recherche pour le Développement (IRD)
at the Faculté de Pharmacie, Université Paris Descartes, we studied the susceptibility to malaria
attacks for children born to mothers with placental malaria using recurrent event techniques.
This work was published in [P9].

5.1 Modelling the e�ect of broad-spectrum antibiotic treatment
on childhood type 1 diabetes onset from a nationwide Dan-
ish cohort study

Infectious morbidity and mortality have been reduced dramatically since the introduction of
penicillin and other antibiotics. However, expanding use of antibiotics has unwanted ecolo-
gical side-e�ects. Recent studies indicate that antibiotic treatment may influence the human
organism in a long-term perspective and increase the risk of chronic diseases (see [WLV+08],
[VWGK15], [BFZ+14]). It is suggested that the hypothetical disease-causing e�ect of antibiot-
ics works through changes of the gut-microbiota, and broad-spectrum antibiotics are thought
to have the most prominent e�ect (see [VWGK15]). Since 1997, the incidence rate of type 1
diabetes in 0-4 year old children in Denmark has stabilised at 14 new cases per 100,000 person-
years, whereas the incidence rates among 5–9 and 10–14 year old children have been steadily
increasing (see [CBE+16] and [Vaa12]). Studies have linked microbiomic changes to an increased
risk of type 1 diabetes, through a complex disturbance of the maturation of the immune system
and an increased vulnerability to environmental triggers of autoimmunity (see [VWGK15]). As
the microbiota is a�ected for several months following a broad-spectrum antibiotic treatment
(see [JLEJ10]) it has been intriguing to link the increasing incidence of childhood type 1 diabetes
to the rising use of broad-spectrum antibiotics. Published studies show inconsistent results (see
[Vaa12], [BKV+06] and [HS09] among others). Mode of delivery has also been linked to an in-
creased risk of type 1 diabetes, possibly due to microbiomic changes, but findings from studies are
conflicting (see [CBE+16] and [CSJ+08] among others). According to the “hygiene hypothesis”

49



5.1. Modelling the e�ect of antibiotic treatment on childhood type 1 diabetes onset

exposure to microbes, including those in the genital tract during birth, increases the microbial
biodiversity and is thought to be beneficial for the immune system maturation and protective
for later development of a variety of diseases. Therefore, harmful e�ects of broad-spectrum anti-
biotics would be expected to be most pronounced among children delivered by prelabor cesarean
section, whom had not been exposed to the maternal vaginal flora (see [WLV+08], [VWGK15]).
In a previous study [CBE+16] the authors studied the e�ect of mode of delivery on the onset
of type 1 diabetes. In our work [P8], we aimed at evaluating the association of broad-spectrum
antibiotic treatment during the first two years of life with subsequent onset of childhood type 1
diabetes and at exploring potential e�ect-modification by mode of delivery.

The data are based on four Danish nationwide registers: the Medical Birth Registry (1997
to 2010), the Fertility Database (1997 to 2010), the National Patient Registry (1977 to 2011),
the Register of Medicinal Product Statistics (1997 to 2012) and additional information from the
national Statistics Denmark registry (1997 to 2012). Linkage between registers and between
children and their parents was performed (when possible) from the unique Danish personal
identification number. All live-born children in Denmark from 1 January 1997 through 31
December 2010 (n = 912, 797) were identified in the Medical Birth Registry. We excluded 38, 218
children from multiple pregnancies (n = 37, 895) and pregnancies with errors in the personal
identification number (n = 323). Furthermore, we excluded 16, 378 children with events before
their two years birthday due to either death (n = 3, 412), emigration (n = 12, 790) or diagnosis
of type 1 diabetes (n = 176). The final population included 858, 201 live-born singleton children
born to 527, 927 mothers.

The children were followed from age two until their fifteenth birthday or end of follow-up
which corresponded to December 2012. It is clear that all children had a di�erent follow-up
time since children born for example in January 2010 were included in the study at age two in
January 2012 and could be followed a maximum of one year only. Therefore, a survival analysis
is needed to take into account the di�erences in follow-up times. Moreover, drop-o� could occur
due to immigration. In this study, the time-scale is the age and the end of follow-up in December
2012 (for 773, 359 children), immigration of the child (for 21, 787 children) or turning 15 (for
60, 934 children) all correspond to censoring. Death of the child (for 618 children) corresponds
to a competing risk since the child cannot develop type 1 diabetes after death. Type 1 diabetes
diagnosis was only observed on 1, 503 children.

Outpatient redemptions of antibiotic prescriptions for the child during the first two years of
life were classified into either: any type of antibiotics (yes or no), narrow-spectrum antibiotics
(yes or no) or broad-spectrum antibiotics (yes or no), classified in accordance with the Danish
Integrated Antimicrobial Monitoring and Research Program 2013.

Descriptive statistics of the study describing in particular the consumption of antibiotics
(narrow, broad or any of the two) can be found in our paper [P8]. A first result concern the
implementation of three Cox models, each of them including either the covariate any antibiotics,
narrow antibiotics or broad antibiotics. They were all adjusted along with the following cov-
ariates: mode of delivery (vaginal, intrapartum cesarean section or prelabor cesarean section),
sex, parity, paternal age (three groups), maternal age (three groups), paternal education (three
groups), maternal education (three groups), paternal type 1 diabetes (yes or no) and maternal
type 1 diabetes (yes or no). Since some of the children included in the study were born from
the same mother, the data must be considered as clustered data. As mentioned in the Introduc-
tion section 2.3.1, a robust sandwich estimator exists for clustered data which accommodates
for correlated times for children born to the same mother. Finally, missing covariates were
handled by complete case analysis. The results of these three models were that children who
had redeemed prescriptions on any type of antibiotics during the first two years of life had a
comparable rate of childhood type 1 diabetes, to children without redemptions of antibiotics
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(HR = 1.06, 95% CI = [0.94, 1.19]). The same pattern was found regarding narrow-spectrum
antibiotics. In contrast, children who had redeemed prescriptions on broad-spectrum antibiotics
had a higher rate of childhood type 1 diabetes as compared to children who did not (HR = 1.13,
95% CI = [1.02, 1.25]). Apart from broad-spectrum antibiotics the following predictors of type
1 diabetes was found: primiparity (HR = 1.12; 95% CI = [1.00, 1.26]), paternal type 1 diabetes
diagnosed before childbirth (HR = 11.21; 95% CI = [8.85, 14.20]) and maternal type 1 diabetes
diagnosed before childbirth (HR= 6.19; 95% CI = [4.31, 8.91]).

In a second part, the following interaction model was studied. We introduce the dichotomous
covariates AB representing the redemption of antibiotics (yes or no for any, broad or narrow
types), intra for intrapartum cesarean section as mode of delivery, and prelabor for prelabor
cesarean section as mode of delivery. All the other covariates are represented by Xj , for j =
1, . . . , 12. The interaction Cox model is defined as:

⁄0(t) exp

Q

a—01AB + —02intra + —03prelabor + —04AB · intra + —05AB · prelabor +
12ÿ

j=1
—jXj

R

b .

As a consequence, the hazard ratio of antibiotic redemption and vaginal delivery versus no antibi-
otic redemption and vaginal delivery is equal to: e—01 . The hazard ratio of antibiotic redemption
and intrapartum cesarean section versus no antibiotic redemption and intrapartum cesarean
section is equal to: e—01+—04 . The hazard ratio of antibiotic redemption and prelabor cesarean
section versus no antibiotic redemption and prelabor cesarean section is equal to: e—01+—05 . Es-
timates of the parameters are performed in the usual way for Cox models. However, confidence
intervals of the last two types of hazard ratios require the knowledge of the multidimensional
distribution of the vector parameters. This is well known in survival analysis theory. In practice,
confidence intervals and tests of functionals of the parameter estimate are implemented in the
lava package [HBJ13] through the estimate function.

A global test for an interaction between antibiotic redemption and mode of delivery corres-
ponds to the test:

(H0) : —04 = —05 = 0 vs (H1) : —04 ”= 0 or —05 ”= 0,

and is again implemented from the lava package. The p-value from this test was equal to 0.0023
which indicates a strong association between antibiotics redemption and mode of delivery. In
vaginally delivered children, redemption of antibiotics, regardless of type, was not associated
with an increased rate of childhood type 1 diabetes (for example, in the case of broad spectrum
antibiotics redemption, the confidence interval for e—01 is equal to [0.94, 1.18]). In contrast, an
association with broad-spectrum antibiotics was found among children delivered by intrapartum
cesarean section (HR = 1.70, 95% CI = [1.15, 2.51]) as well as by prelabor cesarean section
(HR = 1.63, 95% CI = [1.11, 2.39]). In children delivered by prelabor cesarean section redemp-
tion of antibiotics of any type was associated with a two-fold increased rate of childhood type 1
diabetes (HR = 1.91, 95% CI= [1.14, 3.20]). Regardless of mode of delivery, narrow-spectrum
antibiotics were not associated with childhood type 1 diabetes.

As defined by [AA99], a Number Needed to Treat/Harm (NNT or NNH) was calculated. If
the antibiotic redemption was the only covariate, the NNH would correspond to:

NNH =
1
Ŝ(· |AB = 1) ≠ Ŝ(· |AB = 0)

2
≠1

,

where Ŝ(t|AB = 1) and Ŝ(t|AB = 0) represent the Kaplan-Meier estimators of the survival
function evaluated at time t respectively for children that were treated with antibiotics and for
children that were never treated with antibiotics during their first two years of life. The time
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· corresponds to the end-point of the study which is 15 years in our case. Then, we need to
take into account the competing risk of death and to adjust for all the other covariates when
computing the NNH. The competing risk of death is dealt with using Formula (2.6) of Section 2.2
of the Introduction and adjusting for the other covariates is performed by taking the average
over all the covariates values. Let Ŝ(t|AB, X) be the estimated event-free survival function
defined conditionally on antibiotics redemption and the covariate vector X (which comprises all
the covariates except antibiotics redemption). Let ⁄̂(t|AB, X) be the estimated hazard derived
from the Cox model. We then compute the adjusted cumulative incidence

F̂ (t|AB) = 1
n

nÿ

i=1

⁄ t

0
⁄̂(u|AB, Xi)Ŝ(u|AB, Xi)du,

and the NNH is equal to

NNH =
1
F̂ (· |AB = 0) ≠ F̂ (· |AB = 1)

2
≠1

·

In our study, the NNH were estimated to 2, 218 in all children regardless of delivery mode,
433 in children delivered by intrapartum cesarean section and 562 in children delivered by
prelabor cesarean section. Confidence intervals can also be computed, typically using a bootstrap
approach but they were not calculated in the present study.

5.2 Assessing the e�ect of placental malaria on malaria attacks
for Beninese children

Placental malaria (PM) due to P. falciparum is estimated to cause up to 200, 000 infant deaths
every year [SNPM01]. Among the consequences that have been attributed to PM, children
born to a mother with P. falciparum infected placenta seem more susceptible to malaria. This
potential susceptibility, defined as a shorter delay of occurrence of the first malaria infection,
seems to be due to a phenomenon of immune tolerance (IT) which is only partially understood.
This would involve the transfer of parasite proteins from mother with PM to foetus leading to
a modification of immune development of the foetus [BBEL07]. To date, only five studies have
reported an association between PM and the delay of first malaria infection and the existence
of IT, but without precisely accounting for local variability in exposure to vector bites (see for
example [LHCP+97] or [LPWC+11]). However, recently [LPCMP+12] showed that adequately
taking into account variability in exposure to malaria, by means of a predictive statistical model
(see [CKP+12] for the development of this predictive model), reinforced the association between
PM and the time to first occurrence of malaria infection [LPCC+13]. Due to the protocol used
in these previous studies (i.e. children follow-up of from birth, to survey the occurrence of
infections, which are prone to censoring due to drop-o� or end of the study) survival analyses
based on Cox models are particularly suited. However, these studies only considered the first
malaria infection, and were therefore unable to explore whether or not such children remain
more susceptible to malaria after the first infection. We believe this question is important from
a public health point of view, in order to potentially provide more suitable prevention strategies.
Here, we propose to explore this question by means of a recurrent events model allowing the
analysis of not only the first malaria attack, but all malaria attacks occurring during the follow-
up. The aim of the study was to assess the impact of PM on the overall risk of malaria attacks
from birth to 18 months of life in a Beninese cohort. More precisely, the main objective was to
determine whether PM is a risk factor for only the first malaria attack occurring after birth or
also for all subsequent attacks occurring during the first 18 months of life.
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The work in [P9] is based on a cohort study conducted in Benin whose protocol is detailed
in [LPCMP+12]. The study included nine villages and three health centres: Tori Avame, Tori
Cada and Tori Gare, providing primary healthcare as well as a maternity ward for antenatal care
and childbirth. Malaria is endemic in the study region and transmitted mainly by Anopheles
gambiae ss and Anopheles funestus species. More than 600 pregnant women (from 9 villages),
visiting one of the three health centres for antenatal care (ANC) and having no intention to
move out of the region, were included in this study at delivery from June 2007 to July 2008.
Twins, stillbirths and HIV-positive women were excluded. Two months before the beginning of
the study, study supervisors and community health workers informed women about the study.
Midwives were told to present the study to all women frequenting the ANC from the 7th month
of pregnancy.

The infants were visited weekly at home from birth to 18 months and axillary temperature
was measured by a community health worker. In case of a temperature higher than 37.5¶C, or a
history of fever within the last 24 hours, mothers were told to bring their children to the health
centre where a questionnaire was filled up and a Parascreen rapid diagnostic test (RDT) was
made, to obtain an immediate diagnosis of symptomatic malaria infection. A thick blood smear
(TBS) was performed to provide a later confirmation of the RDT result. Following a positive
RDT, the infant was treated by an artemisinin-based combination (arthemeter and lumefantrine)
as recommended by the Beninese National Malaria Control Program. A systematic TBS was
performed monthly, to detect asymptomatic infections. Mothers were also invited to bring their
infants to the health centre at any time, for free attendance in case of fever or any clinical signs,
and the same procedure was applied. A malaria attack was defined as an axillary temperature
higher than 37.5¶ (or a history of fever within the last 24 hours) and a positive RDT and/or
TBS diagnosed during weekly home visit or during an unscheduled visit of the child and his
mother at the health centre. An asymptomatic infection was defined as a systematic monthly
TBS positive without fever, history of fever or any other clinical sign.

550 live-birth singletons (among 646 initially selected newborns included in the cohort) were
included in the analyses. The events of interest are thus the malaria attacks of the Beninese
children. They will be studied using models for recurrent events as the ones presented in Sec-
tion 2.3. The study period was from birth until age 18 month and 827 malaria attacks were
observed during this period. On the overall follow-up, we observed 201 children who did not
experience any malaria attack, 133 children who experienced exactly one, and 216 children who
experienced two or more. It should be noted that due to censoring, the observed malaria attacks
do not correspond to the malaria attacks of interest which are the malaria attacks that one would
observe in case of a complete follow-up from birth to age 18 month. The average follow-up time
was 16.8 months. Children contributed to a total of 281, 903 person-days at risk. Very few
children died during the follow-up (17 in total) and although death precludes the occurrence of
further malaria attacks we did not take into account death as a terminal event in this study. All
the results were also computed considering death as a terminal event and were very similar.

Besides placental malaria, the covariates included in Cox models for recurrent events are
the gravidity status (primigravid vs multigravid), the low birth weight (defined as birth weight
< 2500, yes or no), the age (4 groups), the use of bed-net (yes or no) and the environmental
risk defined as a score assessed from the predictive model of [CKP+12]. The information about
the maternity ward (three di�erent health centres has previously described) was also taken into
account, either as a stratification for the baseline hazard in the Cox model or as a random e�ect
in a Cox frailty model. For descriptive statistics about all the covariates, see our paper [P9]. In
particular, only 11% of the children were born to a mother having placental malaria.

First, we implemented the estimator (2.12) as presented in the Introduction section for
estimating the average number of recurrent events \E[Nú(t)]. For t corresponding to the end
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of follow-up (18 months), we obtained an estimated average of malaria attacks equal to 1.636
for the whole population, equal to 1.626 for children born to mother without placental malaria
and equal to 1.728 for children born to mother with placental malaria. These estimates can
be interpreted as average numbers of recurrent events in the hypothetical situation where all
children were followed up from birth until 18 months without censoring. Then we implemented
a model depending on prior recurrences as presented in Section 2.3.3. This model can be seen
as a multi-state model (see Figure 5.1) with only three possible states: 0 recurrent event, 1
recurrent event and 2 or more recurrent events (modelling further recurrences leads to similar
rate functions).

Ev. 0 Ev. 1 Ev. Ø 2
⁄E

1 ⁄E
2 ⁄E

3

Figure 5.1: The recurrent event model with dependence on prior events seen as a multi-state
situation for the Benin study. All individuals start in the state Ev.0. In the regression setting,
all the rate functions for the recurrent events are assumed to be proportional.

In this multi-state scenario all the di�erent hazard rates can be easily estimated. Then, a
simulated method was developed in order to simulate recurrent events in an hypothetical context
where all individuals would be followed-up from birth to 18 months without censoring. We
denote by �E

k the cumulative hazard rate functions and we use the notations ⁄E
k = ⁄E

3 for k Ø 3.
The simulation scheme is motivated by the fact that if an individual has already experienced
E1, . . . , Ek events whose realisations are denoted e1, . . . , ek, then for t > ek, P[Ek+1 > t|Ek+1 >
ek] = exp(≠(�E

k+1(t) ≠ �E
k+1(ek))) which is distributed as a uniform distribution [0, 1] when

evaluated at t = Ek+1. As a consequence, �E
k+1(Ek+1)≠�E

k+1(ek) is distributed as an exponential
distribution with parameter 1. For a given value of · , the simulations were performed from the
following algorithm:

Step 1. Initialise e0 = 0 and k = 0.

Step 2. Repeat

• draw E following an exponential distribution with parameter 1.

• if [�E
k+1(·) ≠ [�E

k+1(ek) < E exit the algorithm.

• else solve [�E
k+1(t) ≠ [�E

k+1(ek) = E for t œ [ek, · ].
• set ek+1 = t and k = k + 1.

Step 3. Return k and e1, . . . , ek.

The algorithm returns the value k corresponding to the number of recurrent events experienced
by an individual before time · and the times e1, . . . , ek representing his/her corresponding re-
current event times. See also the supplementary material of [P4] for a theoretical justification
of this type of accept-reject algorithm for simulating recurrent events. Note that the algorithm
could be easily extended to take into account the competing risk of death by computing cumu-
lative incidence functions. We took · equal to 18 month. Repeating a large number of times the
procedure allows to obtain simulated data with complete follow-up from birth to 18 month. This
allows to compute the probability distribution of the number of recurrent events experienced
by a child. The method was also applied from stratified samples with respect to the placental
malaria status of the mother. The results are presented in Table 5.1. We can see that the
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probability of getting exactly one malaria attack is much greater for children born to mother
with placental malaria. However, the placental malaria of the mother seems to have no more
impacts on further malaria attacks of the children.

Number 0 1 2 3 4 5 6 7+ Mean
All 33.90 22.30 18.40 10.90 6.80 3.90 2.40 1.40 1.636
PM= 0 34.21 21.75 18.10 12.03 6.71 3.79 2.09 1.32 1.626
PM= 1 25.13 29.25 17.70 11.40 7.94 4.80 2.23 1.55 1.728

Table 5.1: Estimated probability distribution of the number of malaria attacks. These estim-
ations were obtained through a simulation method. They correspond to the distribution of
malaria attacks in the hypothetical situation of complete follow-up from birth to 18 month.

In order to take into account potential confounders we used a Cox model for recurrent
events adjusted with respect to all the covariates as previously described. The model is defined
with dependence on prior recurrent events and with placental malaria entered as an interaction
term with respect to the number of previous recurrent events. We introduce the dichotomous
covariate PM representing the placental malaria status of the mother (yes or no) and all the
other covariates are represented by Xj , for j = 1, . . . , 7. Following the notations of Section 2.3.3,
the model is defined as follows:

E[dN(t)|Ys(t), X] = Ys(t)⁄E
s (t)dt,

where Ys(t) = I(N(t≠) = s ≠ 1), s = 1, 2, 3, . . . and the ⁄E
s (t) correspond to the rate functions

in the multi-state model of Figure 5.1 with the convention ⁄E
s = ⁄E

3 for s Ø 3. The ⁄E
s (t) are

then modelled as:

⁄E
1 (t) = ⁄0(t) exp

Q

a—01PM +
7ÿ

j=1
—jXj

R

b ,

⁄E
2 (t) = ⁄0(t) exp

Q

a—02PM + –01 +
7ÿ

j=1
—jXj

R

b ,

⁄E
3 (t) = ⁄0(t) exp

Q

a—02PM + –02 +
7ÿ

j=1
—jXj

R

b .

Note that there are only two di�erent values for —0s, for s = 1 and s = 2 since we only want
to separate the e�ect of the first malaria attack to the e�ect of all other malaria attacks. In
this model the parameter e—0s corresponds to the hazard ratio for placental malaria for the
first malaria attack when s = 1 and for any other malaria attack when s = 2. The term e–01

corresponds to the hazard ratio for experiencing a second malaria attack versus experiencing
a first malaria attack for a child whose mother did not have placental malaria while e–02 cor-
responds to the hazard ratio for experiencing a new malaria attack knowing that the child has
already experienced at least two versus experiencing a first malaria attack (irrespective of the
placental malaria status). We found that ‰e—01 = 1.33 with 95% CI = [1.00, 1.76], ‰e—02 = 0.90
with 95% CI = [0.66, 1.22], ‰e–01 = 1.72 with 95% CI = [1.41, 2.09] and ‰e–02 = 2.09 with 95%
CI = [1.70, 2.58]. The results are of great interest since they show an e�ect of placental malaria
on the first malaria attack but not on subsequent ones! The huge e�ects of the ‰e–0s seem to
suggest unaccounted heterogeneity in the data. Frailty models were also examined using the
coxme package that fits the method from [TG00] and [RP00] and using the package frail-

typack that fits the the method developed in [RMG12]. They allow to include a random e�ect
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accounting for individual heterogeneity or to include nested random e�ect in order to account
for both heterogeneity on the village and on the individual levels. All these models showed
similar results as our general model and are therefore omitted.

5.3 Prediction of future risk of hospitalisations in paroxysmal
and persistent atrial fibrillation patients using recurrent
event methods

Atrial fibrillation (AF) is a cardiac disease that is characterised by irregular or abnormal heart
rate. The duration of abnormal beating can go from brief episodes to long-time lasting and
can even become constant over time. AF is defined as paroxysmal AF (PAF) if the episode
terminates spontaneously in less then seven days. It is defined as persistent AF (PeAF) if the
episode lasts longer than seven days and does not stop without treatment. Finally, it is defined
as permanent (PermAF) if the patient is experiencing an ongoing episode that cannot be stopped
even with medication. This disease mainly concerns patients over 50 years old and can results
in various complications such as stroke, embolism or heart failure.

From January 1st 2008 to December 1st 2012, patients with AF were enrolled in the “Atrial
Fibrillation Survey – Copenhagen (ATLAS-CPH)” from both the in- and outpatient clinics at the
Department of Cardiology at University Hospital Copenhagen, Hvidovre, Denmark. Inclusion
criteria were age > 18 years, recent (< 1 month) AF documented via either standard 12-lead
electrocardiogram (ECG) or home monitoring and ability to give oral and written consent.
PAF was defined as at least one recorded AF episode with spontaneous conversion to sinus
rhythm, no documentation or suspicion of a reversible primary cause, and excluding other forms
of AF. PeAF was defined as at least one recorded episode of AF lasting > 7 days, or where
either medical or electrical cardioversion was needed to restore sinus rhythm (in accordance
with the Danish Cardiology Society AF guidelines at this time). Patients were excluded if AF
type was PermAF, defined as AF that was accepted by both the patient and physician, and
accordingly rhythm control interventions were not pursued. Patients were also excluded if they
had previously been, or were at any time during the follow up period, treated for AF with an
invasive ablation procedure or anti arrhythmic surgery, or if estimated survival was < 1 year
from inclusion date. Patients undergoing treatment with sodium or potassium channel blocking
anti arrhythmic drugs and patients with bradycardia pacemakers or implantable cardioverter
defibrillators were not excluded. The aim of [S4] was to check if AFHs may be a strong predictor
of future risk of AF symptoms in PAF and PeAF patients, and further to build a predictive
model of future AFH risk in individual patients using recurrent event models.

During enrolment, numerous baseline covariates were recorded through completion of an
extensive questionnaire, supplemented with data from the patient’s comprehensive digitalised
medical record. The variables encompassed general informations on the patient as well as non-
cardiac comorbidity: age (treated as continuous), gender, diabetes mellitus status (yes or no),
hypertension (yes or no), heart failure (yes or no), valvular heart disease (yes or no), ischemic
heart disease (yes or no), chronic obstructive pulmonary disease (COPD, yes or no), alcohol
consumption (> 5 or < 5 units/day).

The follow-up ended on March 1st 2014 and recurrent events were defined as hospitalisa-
tions directly related to a new episode of AF, with a severity or duration of symptoms leading
to hospital contact and ensuing admittance to the cardiology ward following evaluation by the
cardiologist on duty. The AF diagnosis was confirmed by ECG and possible electrical or phar-
macological cardioversion treatment was confirmed in the medical records. Only hospitalisations
where symptomatic AF with or without cardioversion treatment was the primary reason for ad-
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mittance to the ward were classified as recurrent events. There was no loss to follow-up in this
dataset, but censoring still occurred at the end of follow-up for all patients. Due to censoring,
the follow-up times vary according to the inclusion dates (it ranges from 1 year and 2 month
to 6 years and 2 month) and dedicated survival analysis methods must be applied. A terminal
event (TE) was defined as either a) progression to PermAF, defined as the date on which patient
and physician agreed on accepting the presence of permanent or very frequent recurrent AF, or
b) death, in which case the date of death was available in the medical record and used as the
terminal date. All non-AF hospitalisations and visits to the outpatient clinic were scrutinised
for potential progression to PermAF in the follow-up period.

A total of 174 patients were enrolled in the study. The mean follow up duration was 1, 279
days, and the patients all contributed to a total of 222, 459 person-days. There were 325 observed
AFHs in the follow-up period, divided among 84 patients (ranging from 1 to 17 events per
patient). 89% of all patient experienced from 1 to 7 events. A TE was experienced by 45
patients prior to the study end date, 18 due to death and 27 due to disease progression to
PermAF. Baseline characteristics for the covariates are shown on Table 5.2. No patients in our
sample had thyroid or renal disease of any kind (therefore not shown).

Variables Levels Freq. (Perc.)
AF type paroxysmal 50(28.6)

persistent 125(71.4)
gender male 125(71.4)

female 50(28.6)
age median {iqr} 63.0{52.5, 68.0}
alcohol 0 ≠ 5 93(56.4)

5+ 72(43.6)
missing 10

tobacco never 88(53.3)
ex smoker 46(27.9)
smoking 31(18.8)
missing 10

hypertension yes 82(46.9)
no 93(53.1)

heart failure yes 14(8.0)
no 161(92.0)

heart valv dis yes 12(6.9)
no 163(93.1)

isch heart dis yes 23(13.1)
no 152(86.9)

diabetes no 151(86.3)
yes 24(13.7)

copd yes 11(6.3)
no 164(93.7)

Table 5.2: Descriptive statistics of the baseline covariates with frequencies and percentages for
the categorical variables. For age, the median and interval quantile range (iqr) are provided.

We first start with a non-parametric analysis. The terminal event must be accounted in our
analysis (45 observed TE for 174 patients) and we use the estimator (2.11) presented in the
Introduction section to compute the estimated cumulative mean number of AFHs over time.
This estimator is further computed on the subsamples of PAF and PeAF and the results are
displayed on Figure 5.2. On average, a patient will experience one AFH after 635 days and
two AFHs after 1 613 days. As shown in the plots, persistent patients have a much worse
condition than paroxysmal patients. For example, if the patient has persistent AF then he/she
will experience one AFH after 485 days on average and if the patient has paroxysmal AF then
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he/she will experience one AFH after after 1 146 days on average.
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Figure 5.2: Estimated cumulated mean number of AF hospitalisations over time along with 95%
confidence intervals. The left panel is for the whole population while the right panel is for the
subsamples of PAF and PeAF.

Next a Cox model for the recurrent event process and a Cox model for the terminal event were
implemented, both including all the covariates. The recurrent event model was also implemented
with dependence on prior recurrent events as defined in Equation (2.13) (note in particular that
both models for the recurrent event process and the terminal event are implemented). This
multi-state situation is also described by Figure 5.3 with 3 possible states for the AFHs and
one absorbing state corresponding to the terminal event. For simplicity, the hazard rates for
the terminal event were all assumed equal such that ⁄T does not depend on prior recurrences.
Also ⁄E

1 , ⁄E
2 , ⁄E

3 are assumed to be proportional. This model is summarised as follows. We
first introduce the dichotomous covariate AFtype representing the type of AF and all the other
covariates are represented by Xj , for j = 1, . . . , 9.

E[dN(t)|Ys(t), X] = Ys(t)⁄E
s (t)dt,

E[dNT (t)|Ys(t), X(t)] = Ys(t)⁄T (t|X(t))dt,

where Ys(t) = I(N(t≠) = s ≠ 1), s = 1, 2, 3, . . . and the ⁄E
s (t) correspond to the rate functions

in the multi-state model of Figure 5.3 with the convention ⁄E
s = ⁄E

3 for s Ø 3. The ⁄E
s (t) are

then modelled as:

⁄E
1 (t) = ⁄0(t) exp

Q

a—0AFtype +
9ÿ

j=1
—jXj

R

b ,

⁄E
2 (t) = ⁄0(t) exp

Q

a—0AFtype + –01 +
9ÿ

j=1
—jXj

R

b ,

⁄E
3 (t) = ⁄0(t) exp

Q

a—0AFtype + –02 +
9ÿ

j=1
—jXj

R

b .

The parameter —0 corresponds to the e�ect of AF type on the risk of further recurrences, the —js,
j = 1, . . . , 9, correspond to the e�ect of all other covariates and the –0s (s = 1, 2) correspond to
the e�ects of prior recurrences on the risk to experience new ones. The e–0s should be interpreted
as hazard ratio for the risk of experiencing a new recurrent event knowing the patient has already
experienced s AFHs as compared to the risk of experiencing a first AFH.
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Ev. 0

Term. Ev.
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Figure 5.3: The recurrent event model with dependence on prior events seen as a multi-state
situation for the atrial fibrillation study. All individuals start in the state Ev. 0. The death
hazard rates ⁄D are all identical. In the regression setting, all the rate functions for the recurrent
events are assumed to be proportional.

The results for this model are shown in Table 5.3. In the last column, the pvalues for the
standard Cox model (without dependence on prior recurrences) are also displayed. Both models
show a very significant e�ect of AF type with a 3.64 fold increase in risk for persistent patients as
compared to paroxysmal patients in the multi-state model. Both models disagree on the e�ect
of age (borderline significant for the multi-state model and highly significant in the standard
Cox model), diabetes (borderline significant for the multi-state model and highly significant in
the standard Cox model) and of alcohol consumption (pvalue= 18% for the multi-state model
and pvalue= 5% in the standard Cox model). The multi-state model exhibits strong and very
significant e�ects of previous AFHs with a risk 2.6 times higher for patients that have already
experienced one AFH and a risk 6.5 times higher for patients that have already experienced two
AFH as compared to patients that have not yet experienced any AFH. These strong e�ects of
previous recurrences highlight heterogeneity in the model that is not taken into account in the
standard Cox model. The Cox model for the terminal event shows non significant e�ects of all
covariates except for age which is highly significant (results not shown).

Hazard ratio 2.5 % 97.5 % p-value p*
AF type (persistent) 3.64 2.41 5.50 0.0000 0.0000

gender (female) 1.11 0.81 1.52 0.5249 0.9596
age 0.99 0.97 1.00 0.0546 0.0243

hypertension (no) 0.85 0.59 1.21 0.3650 0.3854
heart fail. (no) 0.90 0.51 1.59 0.7274 0.9539

heart valv. dis. (no) 1.19 0.80 1.77 0.4030 0.5127
isch. heart dis. (no) 0.96 0.49 1.86 0.9037 0.7070

diabetes (yes) 0.48 0.21 1.12 0.0910 0.0090

copd (no) 0.76 0.46 1.25 0.2810 0.2810
alcohol (5+) 0.78 0.54 1.13 0.1828 0.0507

AF 1 2.62 1.76 3.89 0.0000
AF 2+ 6.50 4.42 9.56 0.0000

Table 5.3: Results from the Cox model with dependence on prior recurrences. In the last column,
the p* represent the p-values obtained from the previous model without adjustment with respect
to the number of previous AFHs.

In order to perform individual predictions taking into account AFH history, we select a
reduced model from a stepwise variable selection procedure at the 15% level. However, the
diabetes covariate was omitted from the final model. This decision was based both on the
relatively small proportion of patients with diabetes in our patient sample (only 14%) and the
enigmatic nature of AF symptomatology in diabetic patients; diabetes is a risk factor for AF but
may also contribute to a larger proportion of silent AF (see [SPAC12] and [RSM+15]) that could
not be ascertained in our study set-up, as we did not have access to continuous patient ECG
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monitoring. Other methods, such as Lasso methods were also implemented which selected the
same model. The resulting model is shown in Table 5.4. The model for the terminal event only
includes the e�ect of age, its corresponding hazard ratio is equal to 1.05 and is highly significant
(pvalue< 10≠4).

Hazard ratio 2.5 % 97.5 % p-value
AF type (persistent) 3.20 2.01 5.11 0.0000

age 0.99 0.98 1.00 0.0909
AF 1 2.97 2.04 4.32 0.0000

AF 2+ 7.54 5.47 10.40 0.0000

Table 5.4: Final Cox model with dependence on prior recurrences used for the individual pre-
dictions of future AFHs.

Finally, we want to use this model in order to provide predictions on the risk of future
AFHs of a patient knowing his/her history of previous AFHs, his/her age and his/her type of
AF. As presented in Section 2.2 of the Introduction, transition intensities could be plotted but
these quantities only consider the probability of experiencing exactly one new event and do not
consider all the other events. As a matter of fact, it turns out that it is often more useful in
practice to compute the probability of visiting the next state (that is of experiencing a new
event) in the future knowing the actual state (that is the number of recurrent events already
experienced) of the individual. For prediction purposes, this probability provides an estimation
of the risk of health deterioration and take into account all the future events. This probability
is also increasing with respect to time while transition intensities are not necessarily monotone.
We explain, in what follows, how to compute these prediction curves.

Let x and y be two time points such that x < y, where x corresponds to the current time
and y is the time for prediction. We use the multi-state framework, such as in Section 2.2 of
the Introduction. Given that the individual is in state s at time x, the probability of staying in
this state between times x and y is equal to

P̃ E
s,s(x, y) = exp

3
≠

⁄ y

x
(⁄E

s+1(u) + ⁄T (u))du
4

, s = 0, 1.

Given that the individual is in state s at time x, the probability that the individual will pass
through the next state during the time interval [x, y] is equal to

P̃ E
s,s+1(x, y) =

⁄ y

x
exp

3
≠

⁄ u

x
(⁄E

s+1(v) + ⁄T (v))dv
4

⁄E
s+1(u)du, s = 0, 1.

Note the di�erence between the expressions of P̃ E
s,s+1 and P E

s,s+1 from Equation (2.7). In P̃ E
s,s+1,

the individual is allowed to experience any new events (terminal event or recurrent events)
between the times u and y in the integral.

The last state corresponding to s = 2 must be dealt with in a di�erent manner, since when
an in individual is in the state Ev. Ø 2, he/she is continuously at risk of experiencing new
events with rate equal to ⁄E

3 . Given that the individual is in state 2 at time x, the probability
of staying in this state between times x and y is equal to

P̃ E
2,2(x, y) = exp

3
≠

⁄ y

x
⁄T (u)du

4
.

This probability is just the individual’s survival probability as the only risk that he/she is
exposed is the terminal event. Given that the individual is in state 2 at time x, the probability
that the individual will experience at least one more event during the time interval [x, y], is
equal to

P̃ E
2,2+(x, y) = 1 ≠ exp

3
≠

⁄ y

x
exp

1
≠

⁄ u

x
⁄T (v)dv

2
⁄E

3 (u)du
4

.
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Finally, since the terminal event is a competing risk, it is often important to also reports
risks associated with the terminal event. Indeed, these previous curves can be misleading in
case the hazard rate of the terminal event is high as compared to the recurrent event rates. Low
values of the P̃s,s+1 could then be solely due to high risk of experiencing a terminal event: for
example, an individual that is at very high of dying will be at very low risk of experiencing an
hospitalisation since it is very likely that the patient will die before the hospitalisation occurs.

Given that the individual is in state s at time x, the probability of experience a terminal
event between times x and y is equal to

P̃s,T (x, y) = 1 ≠ exp
3

≠
⁄ y

x
⁄T (u)du

4
, s = 0, . . . , 2.

Given that the individual is in state s at time x, the probability that the individual will either
pass through the next recurrent event state or will experience a terminal event during the time
interval [x, y] is equal to

P̃s,ET (x, y) = 1 ≠ exp
3

≠
⁄ y

x

1
⁄T

s+1(u)du + ⁄E
s+1(u)du

24
, s = 0, . . . , 2.

All these prediction estimators are estimated using plug-in estimators „⁄E
s and „⁄T . In the

AF study, the risk of experiencing a terminal event is very low, so for sake of simplicity we
only shows the curves of the type \̃P E

s,s+1 and the curves for \̃P E
s,ET are omitted since they are

very similar. The estimated curve \̃P E
s,s+1 is shown on Figure 5.4 for a hypothetical 60 year old

patient with persistent AF with s = 180 days. We can see that previous AF hospitalisations
dramatically increase the risk of future AF hospitalisations. Figure 5.4 also shows the estimated
curve ‰̃Ps,T for the same patient, this curve does not depend on the number of previous AFHs
since the hazard rate for the terminal event is a function of age only.
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Figure 5.4: Predictions of future AF hospitalisation (left panel) and future terminal event (right
panel) for a 60 years old patient with persistent AF, after 180 days since study entry. On
the left panel, the gray curve represents the risk for a patient that has never experienced AF
hospitalisation, the red curve represents the risk for a patient that has already experienced one
AF hospitalisation and the the green curve represents the risk for a patient that has already
experienced two AF hospitalisations. 95% confidence intervals are plotted along the curves.
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chapter 6

Perspectives

6.1 Detecting heterogeneity in survival analysis in a multidi-
mensional space

The breakpoint model presented in the article [P5] could be extended to detect heterogeneity
along several covariates instead of just one. This would allow to build a powerful data mining tool
for survival data. In order to use the method developed in [P5] in a multi-dimensional setting,
the main key is to find an adequate way of ordering the data according to several continuous
covariates. Let X be a d dimensional covariate vector. Each individual can be characterised
by its coordinate Xi in a d dimensional space. Then, after performing a Principal Component
Analysis (PCA) we can project each point on the space of the principal components (let us say
three for instance), and then fit a “principal curve” from a standard smoother such as local
polynomial smoother. Finally, projecting the points of each individual on the smoothed curve
allows to define a natural ordering of the points. Our breakpoint model can then be directly
applied on these ordered survival data. The R package princurve fits a principal curve on
a data matrix of arbitrary dimension and could be combined with our algorithm to allow for
heterogeneity detection in a multidimensional space.

6.2 Extension of classical age-period-cohort models

In [S2], we studied the age-period-cohort model by considering the hazard as a bivariate function
due to the relationship period=age+cohort. However, standard APC models fit an age e�ect,
a period e�ect and a cohort e�ect in a regression model and one of the main goal is to retrieve
these estimated e�ects. These models are very constrained as they impose the same age e�ect
for every cohort and every period and vice versa. An extension of these models could be to
consider the model:

log ⁄j,k = µ + –j + —k + ”j,k,

where µ is an intercept term, –j represents the age e�ect, —k the cohort e�ect and ”j,k is an
interaction term. This model allows a great flexibility by including an interaction term and
it encompasses the age-cohort model in the situation ”j,k = 0. However, the model will be
over-parametrised even for small sample sizes. To remedy to this problem, we propose to use
a likelihood based method penalised with respect to |”j,k| using our adaptive ridge procedure.
This will result in the selection of few areas where the interaction term is non-null which corres-
pond to areas where the standard age-cohort model is not appropriate. As a result the model
provides interpretable age and cohort e�ects and also takes into account an interaction term
which generalises the standard age-cohort model.
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6.3 A Brier Score for evaluating the prediction performance of
recurrent event models

In the Atrial Fibrillation study [S4], we produced predictive models but the prediction perform-
ance of the final model was not assessed. In survival analysis, standard tools such as the ROC
or AUC curves cannot be directly used since the event of interest is not always observed. New
tools, dedicated to deal with time to event variables have been developed. Among them, the
Brier score [GS06] is a useful one to assess the predictive ability of a model over time. This
score is based on estimated conditional survival functions and works for time to event data
but has not yet been generalised to multiple events such as recurrent events. A modification
of the Brier score could be defined by evaluating the cumulative mean function for recurrent
events. Let Nú be the (unobserved) recurrent event of interest. In the absence of terminal event,s t

0 E[dN(u)]/(1 ≠ G(u)) = E[Nú(t)], where Ni(t) = Nú

i (t · Ci) and G is the cumulative distri-
bution function of the censoring variable C. Now, using our prediction model for ⁄̂(·|X) the
quantity

s t
0 ⁄̂(u|X)du should be a good predictor of E[Nú(t)]. As a consequence, our predictive

score could be defined as:

nÿ

i=1

⁄ A⁄ t

0
⁄̂(u|Xi)du ≠

⁄ t

0

dNi(u)
1 ≠ Ĝ(u)

B2
dt,

where 1≠ Ĝ(·) is the Kaplan-Meier estimator of the censoring distribution. To take into account
a terminal event, the previous formula can be modified by

nÿ

i=1

⁄ A⁄ t

0
Ŝ(u)⁄̂(u|Xi)du ≠

⁄ t

0
Ŝ(u) dNi(u)

q
j Yj(u)

B2
dt,

where Ŝ is the Kaplan-Meier estimator of the terminal event, Ni(t) = Nú

i (t · Ci · T ú

i ) and
Yi(t) = I(T ú

i ·Ci Ø t). This predictive score can be evaluated for our prediction model developed
in [S4]. Our model could then be compared with other methods to predict future atrial fibrillation
hospitalisations. For example [GL02] proposed a Cox model that works when censoring times
are known. Since censoring is only due to the end of study in the atrial fibrillation dataset, their
estimation method could also be implemented. Finally, our single-index modelling approach
introduced in [P2] could provide an alternative model. The single-index model is more general
than the Cox model and it is very likely that we could obtain more performant predictions using
this model.

6.4 A fast algorithm for regression modelling of interval cen-
sored data

In [S3] we provided a new regression modelling of interval censored data using a piecewise
constant baseline. This method uses the adaptive ridge algorithm and is a performant estimation
method in case of interval censored data. An alternative way to fit regression modelling with
interval censored while keeping a flexible baseline hazard is to use pseudo-regression. This
method was developed by [AKR03] and allows to perform regression modelling from a non
parametric estimator of the survival function. A Jackknife technique is used to generate pseudo-
observations and the regression estimates are derived from a generalised linear model with an
adequate link function.
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Chapter 6. Perspectives

Therefore, our idea is to use a non-parametric estimator of the survival function such as the
Turnbull estimator. Using the notations of Section 2.4.1 of the Introduction, we define the lth
leave one out estimate ŝ≠l

j by omitting the lth observation when computing the estimator. It is
defined as:

ŝ≠l
j = 1

n ≠ 1
ÿ

i”=l

–ij ŝ≠l
jq

k –ikŝ≠l
k

.

However, computing all pseudo-estimates can be time consuming since the Turnbull estimator
itself is slow to compute. We propose to compute the alternative estimator:

s̃≠l
j = 1

n ≠ 1
ÿ

i”=l

–ij ŝjq
k –ikŝk

.

and to use the approximation ŝ≠l
j ¥ s̃≠l

j . Straightforward calculations then give:

s̃≠l
j = ŝj + ŝj

n ≠ 1

3
1 ≠ –ljq

k –lkŝk

4
·

These approximated pseudo-estimates can be easily computed for all j and l. Then, the lth
pseudo-value of 1 ≠ Ŝ is defined as:

1 ≠ Ŝ(l)(t) = m(ŝ1 + · · · + ŝj) ≠ (m ≠ 1)(s̃≠l
1 + · · · + s̃≠l

j ),

for t œ (pj , qj+1). These approximated pseudo-estimates were used to perform a Cox regression
and lead to very performant estimations of the regression coe�cients. They are fast to compute
since the approximated pseudo-estimates can be directly computed from the initial estimator ŝj

and do not need to resample the data. On the opposite, for the standard leave-one out estimates
the Turnbull estimator needs to be computed n times.

Finally, the idea of providing fast pseudo-estimates is also of interest for right-censored
data. In that case, Von Mises expansion (see for example [VDVW96]) can be used in order to
approximate the di�erence between the Kaplan-Meier estimator and its leave one out estimate.
This would also provide direct formulas for computing pseudo-estimates and should lead to
a faster algorithm than the standard Jackknife method where the Kaplan-Meier estimator is
computed n times.
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6.4. A fast algorithm for regression modelling of interval censored data
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