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Huntington’s disease (HD)

HD is a progressive brain disorder that causes

uncontrolled movements, emotional problems, and

loss of thinking ability (cognition).

HD is caused by the HTT gene’s mutation.

In normal people, the HTT gene contains a triple

CAG repeat about 10-35 times.

In people with HD, this repeat goes on for 36 or more

times.

Onset of disease occurs earlier and deterioration is

faster with higher number of CAG repeat.

HD leads to neuronal cell death.

Figure: CAG repeat expansions
in HD. Source: California’s Stem Cell
Agency.

https://blog.cirm.ca.gov/2017/03/20/stem-cells-reveal-developmental-defects-in-huntingtons-disease/
https://blog.cirm.ca.gov/2017/03/20/stem-cells-reveal-developmental-defects-in-huntingtons-disease/
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Micro RNAs (miRNAs) and messenger RNAs (mRNAs)

mRNAs are necessary for translating the

genetic information into proteins.

miRNAs are able to turn off genes by

inactivating mRNAs.

A miRNA is complementary to a part of one

or more mRNAs, that promotes cleavage or

destroy them.

The miRNAs and their target-mRNAs have

a many-to-many mirroring relationship

→ We will use this property.

Figure: Mechanism of miRNA action. MiRNA can bind
to specific regions of target mRNA transcripts and
destabilizes the target transcript and/or blocks its
translation. Source: [11].
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Experiment and data

Striatum of knock-in HD mice.

Intervention on polyQ (CAG) length, one of {20, 80, 92, 111, 140, 175}.

Time of evaluation of miRNA and mRNA expressions (log-fold change), either 2, 6 or 10

months.

Results in M = 13, 616 (mRNA) and N = 1, 143 (miRNA) profiles (data points) in R15.

Figure: Left: profile yn of a miRNA (Mir20b). Right: profile xm of a mRNA (Ahrr). It is believed that Mir20b
targets Ahrr.
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Objective

Finding couples (miRNA, mRNA) that “collaborate”

Based on the profiles {x1, . . . , xM} (mRNA profiles) and {y1, . . . , yN} (miRNA profiles), we wish

to identify collections {(xm, yn) : (m, n) ∈ S} gathering mRNAs and miRNAs that “collaborate”.

An ideal match between a mRNA and a miRNA would consist of two profiles that display a

perfect mirroring relationship: yn = −xm.

We will relax this very strong biological hypothesis and consider loosened relationships

y ≈ θ(x) for a transformation θ ∈ Θ, where Θ is a parametric set containing −id.

Illustration: profiles of two

mRNA and miRNA which

are believed to collaborate

Figure: Profile of Mir20b (miRNA) Figure: Profile of Ahrr (mRNA)
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Proposal

We develop a procedure called WTOT-matching to find collections {(xm, yn) : (m, n) ∈ S} of

mRNAs and miRNAs that “collaborate”.

The procedure unfolds in two steps:

WTOT-...: consists in constructing a similarity matrix between mRNAs and miRNAs

we define the similarity matrix as an optimal coupling matrix ;

we operationalize the search of mirroring relationships.

...-matching: consists in deriving several sets of matched elements from the similarity

matrix.
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Modicum of optimal transport (1/2)

Let X := {x1, . . . , xM} ⊂ Rd and Y := {y1, . . . , yN} ⊂ Rd be two data sets.

For any ω ∈ ΩM := {o ∈ (R+)M : st ‖o‖1 = 1} and ω′ ∈ ΩN , define

µωX =
∑

m∈JMK

ωmδxm , νω
′

Y =
∑

n∈JNK

ω′nδyn .

The measures µωX and µω
′

Y represent the two data sets.

Each xm is given a weight ωm.

Each yn is given a weight ω′n.

The optimal transport (OT) matrix is defined as any element of

arg min
P∈Π(ω,ω′)

〈CX ,Y ,P〉F ,

where

Π(ω, ω′) is the set of P ∈ (R+)M×N such that P 1N = ω and P> 1M = ω′;

CX,Y ∈ RM×N is a cost matrix given by (CX,Y )mn := c(xm, yn) for some cost function

c : Rd × Rd → R+;

〈CX,Y ,P〉F :=
∑

(m,n)∈JMK×JNK(CX,Y )mnPmn

Computing the arg min is difficult and slow (and unicity is not guaranteed).
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Modicum of optimal transport (2/2)

Focus on entropic-regularized OT: for any γ > 0,

Wγ

(
µωX , ν

ω′
Y

)
= min

P∈Π(ω,ω′)

{
〈CX ,Y ,P〉F − γE(P)

}
where E(P) = −

∑
(m,n)∈JMK×JNK Pmn(log Pmn − 1). Gain?

unique minimizer;

computing the arg min is much easier (Sinkhorn’s algorithm).

Introduce the Sinkhorn loss:

W̄γ(µωX , ν
ω′
Y ) := 2Wγ(µωX , ν

ω′
Y )−Wγ(µωX , µ

ω
X )−Wγ(νω

′
Y , νω

′
Y )

Gain?

non-negative, symmetric, convex;

metrizes convergence of measures;

unbiased gradient estimates;

interpolates between OT (its nice geometry) and Maximum Mean Discrepancy (its favorable

high-dimensional sample complexity + sensitivity to differences in both location and shape of

distributions).
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WTOT-matching: WTOT-... (1/4)

Introduce

Θ :=
{
θ : Rd → Rd , x 7→ θ(x) = θ1x + θ2, θ1 ∈ T1 ⊂ Rd×d , θ2 ∈ Rd

}
,

where

the matrices θ1 are constrained;

in particular, their diagonals are made of negative values (∼ mirroring relationship);

−id ∈ Θ.

For all ω ∈ ΩM , θ ∈ Θ, define

µωθ(X ) =
∑

m∈JMK

ωmδθ(Xm), νY =
1

N

∑
n∈JNK

δYn .

Our master program is

min
ω∈Ω

min
θ∈Θ
W̄γ

(
µωθ(X ), νY

)
, (�)

where we are interested in the minimizer(ω̂, θ̂) and in the optimal matrix P̂ ∈ Π(ω̂,N−1 1N)

solving

min
P∈Π(ω̂,N−1 1N )

{
〈Cθ̂(X ),Y ,P〉F − γE(P)

}
.
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WTOT-matching: WTOT-... (2/4)

We propose to solve (�) by iteratively updating ω and then θ.

Given a kernel ϕ (standard normal density):

sample θ(0) in Θ;

iteratively for 0 ≤ τ < T ,

1. define ω(τ) ∈ ΩM such that ω
(τ)
m ∝ νYϕ

(
·−θ(τ)(xm)

h

)
(all m ∈ JMK);

2. solve θ(τ+1) ∈ arg minθ∈Θ W̄γ
(
µω

(τ)

θ(X ) , νY

)
.

Then we retrieve the corresponding OT matrix P̂ that solves

Wγ

(
µω

(T )

θ(T )(X )
, νY

)
= min

P∈Π(ω(T ),N−11N )

{
〈Cθ(T )(X ),Y ,P〉F − γE(P)

}
.

Comments:

use of mini-batches in step 2;

θ(T ) : Rd → Rd models to relax the mirroring relationships;

P̂mn can be interpreted as a similarity between xm and yn;

ω(T ): weights to operationalize the many-to-many relationships.
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WTOT-matching: ...-matching (3/4)

Fix two integers k, k ′ ≥ 1, let τ̂ be the quantile of order q of all the entries of P̂.

For every m ∈ JMK and n ∈ JNK

N 0
m :=

{
n ∈ JNK : P̂mn ∈ {P̂m(1), . . . , P̂m(k)} and P̂mn ≥ τ̂

}
,

M0
n :=

{
m ∈ JMK : P̂mn ∈ {P̂(1)n, . . . , P̂(k′)n} and P̂mn ≥ τ̂

}
.

Define the most relevant matches

R :=
{

(m, n) ∈ JMK× JNK : n ∈ N 0
m and m ∈M0

n

}
.
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WTOT-matching: code (4/4)

Code written in python and available on this webpage.

A tutorial is made available to show how simple it is to run the code.

We adapt the Sinkhorn algorithm implemented by Aude Genevay and available here.

The stochastic gradient descents relies on the machine learning framework pytorch.

https://github.com/yen-nguyen-thi-thanh/wtot_coclust_match
https://github.com/yen-nguyen-thi-thanh/wtot_coclust_match/blob/main/WTOT_MC_demo.ipynb
https://github.com/audeg/Sinkhorn-GAN/blob/master/sinkhorn.py
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Real data application (1/4)

We choose k = k ′ = 10, q = 90%.

Some facts:

we obtain 4234 non-empty Nms and 1043 non-empty Mns;∑
m∈JMK card(Nm)

{m∈JMK:Nm 6=∅}
≈ 1.82,

∑
n∈JNK card(Mn)

{n∈JNK:Mn 6=∅}
≈ 6.04.

Our findings and their analysis are shared on this website.

http://www.broca.inserm.fr/WTOT
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Real data application: example of “monotonic” profiles (2/4)

Figure: Top: profile yn of Mir20b (left) and −yn (right). Bottom: profiles xm (m ∈ Mn) of the matched
mRNAs Ahrr, Relb and Cnih3.
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Real data application: example of “peaked” profiles (3/4)

Figure: Top: profile yn of Mir539 (left) and −yn (right). Bottom: profiles xm (m ∈ Mn) of the matched
mRNAs Dnah9, Dnali1, Dyrk3, Otof.
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Real data application: biological analysis of the results (4/4)

A biological analysis is conducted to identify the more relevant pairs.

A pair (x , y) is retained if and only if the mRNA whose profile is x and the miRNA whose

profile is y are both among the 27,355 mRNAs and 1,478 miRNAs appearing in the

TargetScan [5], MicroCosm [1] and miRDB [3] databases.

The enrichment analysis reveals that the matchings output by WTOT-matching are

1. primarily annotated for extracellular matrix organization, which relates to cell identity (due to the

matchings labeled as neither peaked nor monotonic);

2. secondarily annotated for mitigation of host antiviral defense response (due to the matchings labeled as

monotonic), and for conventional motile cilium (due to the matchings labeled as peaked).

Thanks for your attention!
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