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1. Introduction
The modeling of recurrent events has become a crucial issue in various application fields

of statistical inference such as clinical and epidemiological studies, insurance or actuarial
science, in particular in the presence of a terminal event. Among many examples, one
can mention the modeling of asthma, of epileptic seizures in the presence of death or
of repeated warranty claims with possibility of contract breaking. In these settings, we
consider the problem of predicting or identifying the causes which influence the number of
such events occurring during a given time period. A natural way to measure the impact of
covariates on the recurrence of these events consists of estimating the cumulative function
of some recurrent event process of interest conditionally on covariates. In this paper, our
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aim consists of developing both parametric and semiparametric inference for regression
models suited to the conditional cumulative mean function in the presence of independent
right-censoring and terminal event.
Let Ñ(t) represent the number of recurrent events occurring in the time interval [0, t]

for t ≥ 0. In the literature, various regression models tailored for the recurrent event
process Ñ(·) have been considered. These regression models can be roughly divided into
two categories which are Cox-type regression models and accelerated-failure-time (AFT)-
type regression models. Cox-type regression models (see eg Andersen and Gill [1982] or
Sun and Wei [2000]) typically assume that a vector of covariates Z acts on the condi-
tional cumulative mean function through a multiplicative effect on an unspecified baseline
function µ0(·). For instance, Sun and Wei [2000] assume that:

E[Ñ(t)|Z] = exp(β′Z)µ0(t) (1.1)

where β is an unknown vector of parameters. AFT-type regression models (see eg Lin et al.
[1998]) typically assume that a vector of covariates Z acts on the conditional cumulative
mean function through a time-scaling effect on an unspecified baseline function µ0(·):

E[Ñ(t)|Z] = µ0(t exp(β′Z)) (1.2)

even though variations of AFT-like regression models exist, for example, in Ghosh [2004]
under the form

E[Ñ(t)|Z] = exp(−β′Z)µ0(t exp(β′Z)). (1.3)

However, none of the aforementioned papers takes into account terminal event occurrence
or dependent censoring. One of the most developed inferential approaches in the presence
of both dependent and independent censoring can be found in Ghosh and Lin [2003] where
the recurrent event process Ñ(·) is modeled by means of AFT-type regression models.
Frailty and time-dependent covariates extensions of Cox-type regression models have also
been considered in Huang and Wang [2004] and Huang et al. [2010].
Technically speaking, the main advantage of these kinds of models stands in the sim-

plicity of the regression function. But they unfortunately face the disadvantage (with
respect to a purely nonparametric approach) of relying on strong modeling assumptions
that may not hold in practice. However, it turns out that, while allowing full flexibility, the
nonparametric approach is known to fail when the number of covariates is high (greater
than 3 in practice) which is the so-called “curse-of-dimensionality”. On the other hand,
single-index models (see e.g. Ichimura [1993], Härdle et al. [1993], Xia et al. [2002] and
Bouaziz and Lopez [2010]) aim to achieve a compromise between a parametric approach
and a nonparametric one. The basic idea behind this class of models is to assume that the
regression function depends on an unknown linear combination of the covariates. In our
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framework, this corresponds to assuming that E[Ñ(t)|Z] = E[Ñ(t)|θ′0Z], for some un-
known vector θ0. Hence if this parameter was known, estimating E[Ñ(t)|Z] would reduce
to a nonparametric problem in dimension one. This dimension reduction assumption al-
lows to achieve better convergence rates and still ensures enough flexibility to be adapted
to a large number of practical cases. Moreover, these models can also generalize standard
models such as the Cox or AFT regression models.
In this work, we first study a general parametric regression model for a recurrent

event process in the presence of independent right-censoring and terminal event. We
then study a semiparametric generalization which relies on a single-index assumption.
We propose new procedures to estimate both the index and the conditional cumulative
mean regression function and provide a detailed asymptotic study of the proposed estima-
tors. Compared to uncensored single-index models adapted to mean-regression, see e.g.
Ichimura [1993], the presence of censoring usually deteriorates the quality of estimation
in the tail of the distribution. Therefore, in our specific setting of regression for recur-
rent events with censoring and terminal event, we introduce a weight function designed
to compensate for the lack of information induced by independent censoring. The main
novelty of our procedure stands in the fact that this weight function may be chosen using
data-driven techniques. We then discuss a data-driven way of calibrating the parameters
involved in the estimation procedures.
The paper is organized as follows. In Section 2, we define the parametric and

semiparametric models, introduce the corresponding estimators and explain the general
methodology. Asymptotic results for our new estimators are presented in Section 3.
Simulation studies are carried out in Section 4 to investigate on the performance of our
methods for moderate sample size. Technical results are postponed to the Appendix in
Section 6.

2. Model assumptions and methodology
In this section, we present the regression framework. Specifically, Section 2.1 intro-

duces the different regression models considered in this paper. Section 2.2 presents the
estimation procedures. They are based on a least-squares type criterion involving a
rescaled process and a weighting measure introduced in Section 2.2.1 which enable to
correct the impact of censoring. The parametric case is dealt with in Subsection 2.2.2
and the semiparametric case is treated in Subsection 2.2.3.

2.1 Regression models for the recurrent event process
Consider the process Ñ(·) where we recall that Ñ(t) stands for the number of recurrent

events occurring in the time interval [0, t] for any t ≥ 0. Let D denote the random variable
representing the time until occurrence of a terminal event. In clinical applications, this
variable D may stand for the death time of a patient. For insurance applications, D can
represent the warranty length (which can be random if the client has the possibility of
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breaking the contract) or the lifetime of the insured good. Then introduce the recurrent
event process N∗(·) = Ñ(·∧D) (where a∧ b denotes the infimum between a and b) which
can be seen as a piecewise constant function with jumps only on [0, D]. In this paper, we
aim to infer on the cumulative conditional mean function given for t ≥ 0 by

µ(t|z) = E [N∗(t)|Z = z]

where Z is a d−dimensional vector of covariates. Note that our interest is focused on the
process N∗(·) and not on Ñ(·). The role of the variable D is to stop the process Ñ but,
on the opposite of Ghosh and Lin [2003] for instance, we are not interested in modeling
its distribution. Note also that no assumptions regarding the dependence between N∗

and D are made. Our setting is similar to the one of Ghosh and Lin [2000], Dauxois and
Sencey [2009] or Bouaziz et al. [2013].
We now present the two different models for µ that are studied throughout this paper.

Model 1 : parametric case.

µ(t|z) = µ0(t, z; θ0), (2.1)

where θ0 is unknown in some parameter space Θ ⊂ Rd′ (where d′ may be different from
d) and µ0 is a known function.

Model 2 : semiparametric case.

µ(t|z) = µθ0(t, θ′0z), (2.2)

where θ0 is unknown in some parameter space Θ ⊂ Rd, where
µθ(t, u) = E[N∗(t)|θ′Z = u] and where the family of functions F = {µθ : θ ∈ Θ} is
unknown. We impose that the first component of θ0 is 1 to identify this parameter. Indeed,
if we do not make any assumption on θ0, this parameter would only be defined up to a
multiplicative constant. Note that another equivalent condition would consist of imposing
that θ0 is of norm 1 for any given norm on Rd. Model 2 is a single-index model (see e.g.
Härdle et al. [1993]), since it consists of assuming that µ(t|z) depends on the covariates
only through a linear combination θ′0z. In the notation that we introduce in (2.2) and that
we will use throughout this paper, we emphasize the fact that the function µ depends on
θ in two different ways. The notation µθ indicates that, for two different values of θ, the
conditional distribution that one is considering is not the same. Indeed, the distribution
of N∗(·) conditionally on θ′1Z is, in general, not the same as the distribution of N∗(·)
conditionally to θ′2Z for two different vectors θ1 and θ2.Moreover, this function µθ0(t, u) is
evaluated at the point θ′0Z. This distinction is essential to obtain some crucial properties
of single-index models, and explains why the vector of partial derivatives with respect
to θ has a relatively complex form (see Lemma 5 in Supplementary material). To ensure
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consistency of single-index approaches, a continuity property of the map θ → µθ(·, ·)
(which is a map from Θ towards some space of functions) will be required. To illustrate
the notations, consider the particular case where

E[N∗(t)|Z] = (θ′0Z + 5)µ0(t)

for some function µ0(·). A quick computation shows that

E
[
N∗(t)|θ′Z

]
= E

[
E[N∗(t)|Z]|θ′Z

]
= (θ′0E[Z|θ′Z] + 5)µ0(t),

which gives

µθ(t, u) = (θ′0E[Z|θ′Z = u] + 5)µ0(t).

The appealing feature of Model 1 stands in the simplicity of the regression function.
However, like every parametric procedure, it relies on strong assumptions which have few
chances to hold in practice. On the opposite, a fully nonparametric procedure requires
fewer assumptions but suffers from the so-called “curse of dimensionality” when the
number of covariates is high. Therefore, Model 2 appears as a good compromise between
the parametric approach and the nonparametric one. Indeed it is more flexible than a
fully parametric one but is not stroke by the curse of dimensionality since it relies on a
dimension reduction assumption. Moreover, Model 2 can be seen as a generalization of
the models exposed in equations (1.1) to (1.3).

One does not generally observe N∗(·) on the whole time interval [0, D] because the ran-
dom variableD is subject to right-censoring. Let C be a positive random variable standing
for the censoring time. The observation time T is then given by T = D∧C. Hence, instead
of observing N∗(t) for t ∈ [0, D], one only observes N(t) = N∗(t ∧ C) for t ∈ [0, D]. Let-
ting δ = I(D ≤ C), the observations consist of n i.i.d. replications (Ti, δi, Zi, Ni(·))1≤i≤n

of (T, δ, Z,N(·)). Let us introduce the cumulative distribution functions of the observed
variables in the censored data model:

H(t) = P (T ≤ t),

F (t) = P (D ≤ t),

G(t) = P (C ≤ t).

We also define τH = inf{t : H(t) = 1} the right endpoint of the support of the ran-
dom variable T . In the sequel, we need the two following assumptions to identify these
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distribution functions.

Assumption 1. For a counting process L let us denote dL(t) = L(t) − L(t−) (where
L(t−) = limu→t,u<t L(u)) the jump of process L at time t. Assume that

P
(
dN∗(C) 6= 0

)
= 0,

P (D = C) = 0.

This is a common assumption in the context of recurrent events which prevents us from
ties between the occurrence times of death, censoring and recurrent events.

Assumption 2. We write down A⊥⊥B when two random variables A and B are inde-
pendent. Assume that

C⊥⊥(N∗(·), D),

P (C ≤ t|N∗(·), Z,D) = P (C ≤ t|N∗(·), D) for t ∈ [0, τH ].

Assumption 2 holds in the particular case where C is independent of
(N∗(·), D, Z) but is slightly more general since it does not require the independence
between C and Z. Similar assumptions are often considered in the literature on the
Kaplan-Meier estimator for the survival distribution function with covariates. To study
the Kaplan Meier estimator, Stute [1993] assumed that P (C ≤ t|Z,D) = P (C ≤ t|D) and
C⊥⊥D (see the discussion in Stute [1993] for this assumption). Our Assumption 2 is the
natural extension of the assumption proposed by Stute [1993], but now in the presence
of a recurrent event process N∗.
Alternatively, one could assume that C⊥⊥(N∗(·), D) conditionally on Z. Using such an

assumption instead of Assumption 2 would require to modify the approach described
below, by replacing the Kaplan-Meier estimator of the distribution of C by a conditional
Kaplan-Meier estimator as the one proposed by Beran [1981] and studied by Dabrowska
[1987]. In the following, we do not focus on the theoretical behaviour of this modification,
which is left to future research.

2.2 Estimation procedure
2.2.1 Heuristics for the rescaled process and the weighting measure
Our objective is to estimate E[N∗(t)|Z] successively under Model 1 and Model 2 from

the i.i.d. sample (Ti, δi, Zi, Ni(·))1≤i≤n. In our regression framework, going back to the
definition of the conditional expectation, it is quite natural to perform estimation of
E[N∗(t)|Z] using minimization of a least-squares-type criterion both in Model 1 and
Model 2. With this method in mind, consider a least-squares criterion which is integrated
over [0, τH) to control the trajectory of the process of interest over this time interval.
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This gives the following criterion, say under Model 1,∫ τH

0
E
[
(µ0(t, Z; θ)−N∗(t))2

]
dt

which is to be minimized with respect to θ. One of the difficulties we face when estimating
the conditional expectation of N∗(t) is that the process N∗(·) is not directly observed
because of censoring. Hence, empirical versions of criteria like the above one can not be
computed since they rely on N∗(·). To circumvent this difficulty we introduce a rescaled
process Y (·) which is designed to compensate the censoring effects. We define for any t
in [0, τH)

Y (t) =

∫ t

0

dN(s)

1−G(s−)
. (2.3)

The logic behind this rescaled process is similar to the approach used by Leurgans [1987]
in a censored regression framework. In the definition (2.3), the denominator is decreasing
when s grows to infinity. This means that we give more weight to the events we observe
when s is large and compensate for the lack of observations due to censoring for large s. To
go further in the definition of our least-squares criterion, notice that under Assumptions
1 and 2, we have for any s in [0, τH)

E[dN(s)|Z] = E[dN∗(s ∧ C)|Z]

= E[dN∗(s)I(s ≤ C)|Z]

= E[dN∗(s)|Z](1−G(s−)) (2.4)

so that

E[Y (t)|Z] = E[N∗(t)|Z].

The consequence is that we can now consider a modified least-squares criterion based on
the estimated rescaled process Y (·), say again under Model 1,∫ τH

0
E
[
(µ0(t, Z; θ)− Y (t))2

]
dt,

that is the integrated squared error (see for example Bowman [1984] in the context of
cross validation for kernel estimators). The other difficulty we have to face is that we
have to ensure the finiteness of our least-squares criterion which is not guaranteed with
the above definition. To circumvent this other difficulty, we will use a weighting measure
w specifically designed to ensure the finiteness of our criterion so that our criterion to be
minimized will be of the form∫ τH

0
E
[
(µ0(t, Z; θ)− Y (t))2

]
dw(t).
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We now consider in details separately the parametric case and the semiparametric case
in the two subsections to come.

2.2.2 The parametric case
Suppose that Model 1 is satisfied. Let w denote a measure such that

w
(
[0,∞)

)
<∞ and such that the quantity

Mw(θ, µ0) =

∫ τH

0
E
[
µ0(t, Z; θ)2

]
dw(t)− 2

∫ τH

0
E
[
Y (t)µ0(t, Z; θ)

]
dw(t)

is finite. Let us notice that µ0(·, ·; θ) and Y (·) may tend to infinity when t → τH . This
remark leads us to introduce a supplementary condition on w distinct from the fact that
this measure has a finite total mass. The true parameter value θ0 satisfies

θ0 = arg min
θ∈Θ

Mw(θ, µ0) (2.5)

regardless of the choice of w. To estimate θ0, it is natural to replace the function Mw by
an empirical version. However, the rescaled process Y (·) can not be computed in practice
since it relies on the distribution function G which is usually unknown. To circumvent this
other difficulty, we introduce an empirical counterpart of Y (·). Let T(n) denote the last
order statistic of the sample (Ti)i=1,...,n. The distribution function G can be consistently
estimated on [0, T(n)] by the Kaplan-Meier estimator of G denoted by Ĝ and given for t
in [0, T(n)] by

Ĝ(t) = 1−
∏
i:Ti≤t

(
1− 1∑n

j=1 I(Tj ≥ Ti)

)1−δi

.

Consequently, the process Y (·) can itself be estimated for t in [0, T(n)] by

Ŷ (t) =

∫ t

0

dN(s)

1− Ĝ(s−)
. (2.6)

The empirical version of Mw considered here is then

Mn,w(θ, µ0) =
1

n

n∑
i=1

∫ T(n)

0
µ0(t, Zi; θ)

2dw(t)− 2

n

n∑
i=1

∫ T(n)

0
Ŷi(t)µ0(t, Z; θ)dw(t).

This allows us to define an estimator of θ0 as

θ̂(w) = arg min
θ∈Θ

Mn,w(θ, µ0). (2.7)

In the above definition, we emphasize the fact that this estimator depends on the choice
of the measure w. This measure w is an important feature of our procedure. First, in
some situations, the statistician may wish to give more weight to some time intervals
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which are of higher importance. Moreover, the measure w is also useful to control the
rescaled process. Indeed, in Equation (2.6), the denominator goes to zero when s grows
large and w can be precisely designed to avoid the practical problems caused by these too
small denominators. Therefore, the finite sample behaviour of our estimation procedure
strongly relies on a wise choice of the measure w.
The asymptotic results derived in Section 3 allow us to obtain asymptotic representa-

tions of θ̂(w) as a process indexed by w which hold uniformly in w ∈ W where W is a
set of measures in which the statistician plans to choose w. We discuss in Section 3.4 the
adaptive choice of w.

2.2.3 The semiparametric case
Suppose that Model 2 is satisfied. In the semiparametric case, the family of functions µθ

is unknown. However, the criterion used for the parametric case can be slightly modified
to estimate θ0. We can write

θ0 = arg min
θ∈Θ

Mw(θ, µθ),

where

Mw(θ, µθ) =

∫ τH

0
E
[
µθ(t, θ

′Z)2
]
dw(t)− 2

∫ τH

0
E
[
Y (t)µθ(t, θ

′Z)
]
dw(t)

and where w is now chosen such that Mw(θ, µθ) < ∞ in addition to having finite total
mass.
Using a family of nonparametric estimators µ̂θ of µθ, we define the estimator of θ0 as

θ̂(w) = arg min
θ∈Θ

Mn,w(θ, µ̂θ), (2.8)

where

Mn,w(θ, µ̂θ) = n−1
n∑
i=1

∫ T(n)

0
µ̂θ(t, θ

′Zi)
2dw(t)− 2n−1

n∑
i=1

∫ T(n)

0
Ŷi(t)µ̂θ(t, θ

′Zi)dw(t).

We give indications in Section 2.2.4 on how to perform the minimization of such a contrast
in practice. In Section 3.3, we derive an asymptotic representation of θ̂(w) (see Theorem
3) regardless of the type of nonparametric estimators µ̂θ used in the computation and
provided these nonparametric estimators satisfy a list of uniform convergence conditions.
Nevertheless, let us give a precise example of µ̂θ using kernel estimators. The convergence
properties of this type of estimator are derived in Section 6.3.
Using the same arguments as in (2.4), we have from the identifiability Assumptions 1

and 2,

µθ(t, u) =

∫ t

0

E[dN(s)|θ′Z = u]

1−G(s−)
. (2.9)
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We estimate the numerator in (2.9) using a kernel estimator and the denominator by the
Kaplan-Meier estimator Ĝ, leading to

µ̂θ,h(t, u) =

∫ t

0

∑n
i=1K

(
θ′Zi−u

h

)
dNi(s)∑n

j=1K
(
θ′Zj−u

h

) (
1− Ĝ(s−)

) , (2.10)

where K is a kernel function and h a bandwidth sequence going to zero. In Section 6.3, we
list some conditions on K and h. How to choose the bandwidth from the data in practice
is considered at the end of Section 3.6.
It is important to mention that, in this semiparametric approach, knowledge of the

family of functions {µθ : θ ∈ Θ} is never required for computing the estimator, since
these functions are replaced by nonparametric estimators. This family of functions will
only appear in the theoretical validation of the procedure, as the limit of the estimators µ̂θ.

2.2.4 Minimization of the contrast (2.8)
The contrast Mn,w(θ, µ̂θ) can be tricky to minimize in practice, since it depends on

nonparametric estimators. A first possibility consists of using iterative algorithms (see
e.g. Xia et al. [2002]). Another possibility is to use a direct maximization as the one
described by Härdle et al. [1993] or Delecroix et al. [2006] in the case of single-index
mean regression. This technique is particularly suited to the use of kernel estimators,
which depend on a bandwidth parameter h (as the ones described in Section 3.6 and used
in Section 4). To emphasize this dependence, we will use the notation µ̂θ,h.
In this case, the function Mn,w(θ, µ̂θ,h) can be seen as a function of both θ and h.

Härdle et al. [1993] proposed to choose jointly θ̂ and an adaptive bandwidth ĥ by taking
(θ̂, ĥ) = arg minθ∈Θ,h∈HMn,w(θ, µ̂θ,h), where H denotes a set of bandwidths among which
one wishes to select the most appropriate. In Section 4, we use a finite grid of bandwidths
H, so that minimizing this contrast with respect to h does not raise any additional
technical issue. In the case of mean-regression, Härdle et al. [1993] have shown that
ĥ obtained using this technique is asymptotically equivalent to the (uncomputable) h∗

obtained using cross-validation if we had an exact knowledge of the nonparametric part.
The same result is proved in our context, in Section 3.6.
Nevertheless, the question of initializing the minimization algorithm with the proper

starting point is more delicate. In practice, one may use the average derivative tech-
nique, see Powell et al. [1989] in the case of mean-regression. The main advantage of
this technique is that it produces closed formulas to compute an estimator of the index
θ0. Therefore, the average derivative technique is often used in order to provide starting
points (see e.g. Delecroix et al. [2003]). Denoting ∇zµ(t|z) the vector of partial derivatives
of µ with respect to z, and µ′θ0(t, u) = ∂uµθ0(t, u), it follows from the single-index as-
sumption that ∇zµ(t|z) = θ0µ

′
θ0

(t, θ′0z). Hence,
∫ τH

0 ∇zµ(t|z)dw(t) is colinear to θ0. This

quantity can be estimated by
∫ T(n)

0 ∇zµ̃(t|z)dw(t), where µ̃ is a nonparametric estimator
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of µ(t|z) (which does not take the single-index assumption into account). Computing

βn =
1

n

n∑
i=1

∫ T(n)

0
∇zµ̃(t|Zi)dw(t),

this quantity should be close to be colinear to θ0 provided that µ̃ is consistent. Then,
one can compute θ̂prel = βn/βn,1, where βn,1 denotes the first component of βn. This
preliminary estimator θ̂prel, has a first component equal to one, as required.
As an estimator µ̃, one can use

µ̃(t|z) =

∫ t

0

∑n
i=1 K̃

(
Zi−z
h0

)
dNi(s)∑n

j=1 K̃
(
Zj−z
h0

) (
1− Ĝ(s−)

) ,
where K̃ is a (multivariate) kernel function, and h0 a preliminary bandwidth. As every
nonparametric estimator in high dimension, the rate of convergence of this estimator
may be slow, but it will still be consistent. Moreover, the fact that βn is computed from
a mean of nonparametric estimator improves the quality of this preliminary estimation.
To simplify the notations we use the same bandwidth h0 for each component of Zj but
different bandwidths may be used in practice.

3. Asymptotic results
In this part, we provide asymptotic properties for our estimators. In Section 3.1, we

expose our main lemma, which is the keystone of our theoretical results. In the next two
sections we give asymptotic representations of θ̂(w) for the parametric and semiparametric
models. We then discuss the adaptive choice of the measure w in order to improve the
performance of our procedure in Section 3.4. The variance of the limiting process is
estimated in Section 3.5 and the choice of the bandwidth h in (2.10) is highlighted in
Section 3.6.
All these results are presented for both models 1 and 2 and a large class of measures
W. The technical assumptions needed for the estimation procedures are listed in Section
6.1. In particular, our results hold true if we consider a class {µθ(·, ·), θ ∈ Θ} (or
{µ0(·, ·; θ), θ ∈ Θ} in the parametric case) of polynomial functions and if we take W as
a set of piecewise constant bounded measures with a finite number of jumps. However,
notice that the assumptions presented in Section 6.1 are more general and correspond to
a larger area of practical situations.

3.1 The main lemma
From a theoretical viewpoint, the main issue stands in studying the difference between

Y and its estimated version. The following lemma provides an asymptotic representation
for a class of empirical sums in which the process Ŷ is involved.
Such kind of asymptotic representations have become very valuable tools for inference
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in survival analysis, since they allow to transform a non i.i.d. quantity into an other
one that can be easily studied using the central limit theorem. See e.g. Stute [1995], Van
Keilegom and Akritas [1999], Sánchez Sellero et al. [2005] or Lopez [2009] for some similar
results in other frameworks.

Lemma 1. Let F be a class of functions with bounded envelope F̄ satisfying Property 1
and assume that Assumptions 3 and 4 hold. Define, for any function f ∈ F ,

Sn(f, w) =
1

n

n∑
i=1

∫ τH

0
Yi(t)f(t, Zi)dw(t)

and

Ŝn(f, w) =
1

n

n∑
i=1

∫ T(n)

0
Ŷi(t)f(t, Zi)dw(t).

(1) Assume that supw∈W E[Sn(F̄ , w)] <∞. Let

Iw(Ti, δi, f) =

∫ τH

0

∫ t

0
ηs−(Ti, δi)E[f(t, Z)dµ(s|Z)]dw(t)

where

dµ(s|Z) =
∂µ(s|Z)

∂s
ds

ηt(T, δ) =
(1− δ)I(T ≤ t)

1−H(T−)
−
∫ t

0

I(T ≥ s)dG(s)

[1−H(s−)][1−G(s−)]

Then, for all f ∈ F ,

Ŝn(f, w)− Sn(f, w) =
1

n

n∑
i=1

Iw(Ti, δi, f) +Rn(f, w),

where

sup
w∈W,f∈F

|Rn(f, w)| = oP (n−1/2).

Moreover, if the measures w are all supported in [0, τ ] for some τ < τH , then

sup
w∈W,f∈F

|Rn(f, w)| = OP (n−1 log n).

(2) If f̂ denotes a family of nonparametric estimators of functions f ∈ F satisfying
supf∈F ‖f̂ − f‖∞ = oP (1), then

sup
w∈W

|Ŝn(f̂ , w)− Ŝn(f, w)| = oP (n−1/2).

12
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Moreover, if the measures w are all supported in [0, τ ] for some τ < τH , then

sup
w∈W

|Ŝn(f̂ , w)− Ŝn(f, w)| = OP (n−1 log n).

The proof is postponed to Section 6.2. With the estimated rescaled process Ŷ at hand,
we can now propose M−estimation procedures to estimate the regression function in
both the parametric and semiparametric cases.

3.2 Asymptotic normality of θ̂ in the parametric case
Let =⇒ denote the weak convergence.

Theorem 2. Assume that (2.1) holds. Under Assumptions 1 to 5, the estimator in (2.7)
admits the following asymptotic representation

θ̂(w)− θ0 = Σ−1
w,p

{
1

n

n∑
i=1

(∫ τH

0
[Yi(t)− µ0(t, Zi; θ0)]∇θµ0(t, Zi; θ0)dw(t)

+

∫ τH

0

∫ t

0
ηs−(Ti, δi)E[∇θµ0(t, Z; θ0)dµ0(s, Z; θ0)]dw(t)

)}
+Rn(w),

where supw∈W ‖Rn(w)‖ = oP (n−1/2). As a consequence, for any w ∈ W,

√
n
(
θ̂(w)− θ0

)
=⇒ N (0, Vw,p),

where Vw,p = Σ−1
w,p∆w,pΣ

−1
w,p with

Σw,p = ∇2
θMw(θ0, µ0),

∆w,p = E
[
Iw(T, δ,∇θµ0(·, ·; θ0))Iw(T, δ,∇θµ0(·, ·; θ0))′

]
.

Proof. Write

Mn,w(θ, µ0) = −2Ŝn(µ0(·, ·; θ), w) + n−1
n∑
i=1

∫ T(n)

0
µ0(t, Zi; θ)

2dw(t). (3.1)

Then, using the asymptotic representation of Lemma 1, one gets

Mn,w(θ, µ0) = − 2

n

n∑
i=1

∫ T(n)

0
Yi(t)µ0(t, Zi; θ)dw(t)

+
1

n

n∑
i=1

∫ T(n)

0
µ0(t, Zi; θ)

2dw(t)

− 2

n

n∑
i=1

∫ τH

0

∫ t

0
ηs−(Ti, δi)E[µ0(t, Z; θ)dµ(s|Z)]dw(t) +Rn(µ0(·, ·; θ), w)

= T1(θ, w) + T2(θ, w) + T3(θ, w) +Rn(µ0(·, ·; θ), w),

13
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where supθ,w |Rn(µ0(·, ·, θ), w)| = oP (1), since Assumption 5 ensures that
{µ0(·, ·; θ), θ ∈ Θ} satisfies the conditions of Lemma 1. The sum of the first two terms
T1(θ, w)+T2(θ, w) converges towardsMw(θ, µ0) from the law of large numbers. Moreover,
Assumption 5 ensures that this convergence is uniform with respect to θ and w. On the
other hand, the expectation of T3(θ, w) is 0, and the convergence of T3(θ, w) is uniform
with respect to θ and w since it is of the form n−1

∑n
i=1

∫ τH
0 ψ(θ, t, Ti, δi, Zi)dw(t), with ψ

satisfying a Lipschitz property with respect to θ (this is a consequence of Properties 2 and
3 for {µ0(·, ·; θ), θ ∈ Θ}). Finally, this ensures supθ,w |Mn,w(θ, µ0) −Mw(θ, µ0)| = oP (1)

and consequently supw ‖θ̂(w)− θ0‖ = oP (1).

To obtain the uniform CLT property for θ̂(w), use a Taylor expansion of ∇θMn,w(θ, µ0)

around θ0:

∇θMn,w(θ̂, µ0) = ∇θMn,w(θ0, µ0) +∇2
θMn,w(θ̃, µ0)(θ̂ − θ0), (3.2)

for some θ̃ between θ̂ and θ0. The left-hand side of (3.2) is zero by definition of θ̂.Moreover,
the matrix∇2

θMn,w(θ̃, µ0) is almost surely invertible for n large enough under Assumption
5 since θ̂ (and consequently θ̃) tends to θ0 almost surely. This leads to

θ̂ − θ0 = −∇2
θM
−1
n,w(θ̃, µ0)∇θMn,w(θ0, µ0).

Write

∇2
θMn,w(θ̃, µ0) =− 2

[
Ŝn(∇2

θµ0(·, ·; θ̃), w)− 1

n

n∑
i=1

∫ τH

0

(
∇θµ0(t, Zi; θ̃)∇θµ0(t, Zi; θ̃)

′

+µ0(t, Zi; θ̃)∇2
θµ0(t, Zi; θ̃)

)
dw(t)

]
+Rn(θ, w),

where Rn(θ, w) comes from the change in the integration bounds of [0, T(n)] by [0, τH ]

and can be seen to tend uniformly to zero from Lebesgue’s dominated convergence since
the term inside the integral is bounded. From Lemma 1, the almost sure convergence
of θ̃ and the fact that {∇2

θµ0(·, ·, θ), θ ∈ Θ} satisfies Property 3 (see Assumption 5), we
get that Ŝn(∇2

θµ0(·, ·; θ̃), w) converges to
∫ τH

0 E[Y (t)∇2
θµ0(t, Z; θ0)]dw(t) uniformly in w.

The second part converges uniformly to its expectation over Θ as a consequence of the
Glivenko-Cantelli property of classes of functions satisfying Property 3. This shows that

sup
w
‖∇2

θM
−1
n,w(θ̃, µ0)−∇2

θM
−1
w (θ0, µ0)‖ = oP (1).

14
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On the other hand, we write

∇θMn,w(θ0, µ0) = −2

[
Ŝn(∇θµ0(·, ·; θ0), w)− 1

n

n∑
i=1

∫ τH

0
µ0(t, Z; θ0)∇θµ0(t, Z; θ0)dw(t)

]

+
2

n

n∑
i=1

∫ τH

T(n)

µ0(t, Z; θ0)∇θµ0(t, Z; θ0)dw(t).

Using Lebesgue’s dominated convergence theorem, the last term tends uniformly to zero
at a n−1/2 rate. Finally, the asymptotic representation follows from Lemma 1.

3.3 Asymptotic normality of θ̂ in the semiparametric case

Theorem 3. Assume that (2.2) holds. Under Assumptions 1 to 4 and 6 to 9, the estimator
in (2.8) admits the following asymptotic representation

θ̂(w)− θ0 = Σ−1
w,sp

{
1

n

n∑
i=1

(∫ τH

0
[Yi(t)− µθ0(t, θ′0Zi)]∇θµθ0(t, Zi)dw(t)

+

∫ τH

0

∫ t

0
ηs−(Ti, δi)E[∇θµθ0(t, Z)dµθ0(s, θ′0Z)]dw(t)

)}
+Rn(w),

where supw∈W ‖Rn(w)‖ = oP (n−1/2). As a consequence, for any w ∈ W,

√
n(θ̂(w)− θ0) =⇒ N (0, Vw,sp),

where Vw,sp = Σ−1
w,sp∆w,spΣ

−1
w,sp with

Σw,p = ∇2
θMw(θ0, µθ0),

∆w,p = E
[
Iw(T, δ,∇θµθ0(·, ·; θ0))Iw(T, δ,∇θµθ0(·, ·; θ0))′

]
.

Proof. The consistency of the preliminary estimator can be proved in the same way
as in the proof of Theorem 2. Following the decomposition (3.1), one can show that
Mn,w(θ, µ̂θ) = Mn,w(µθ) +Rn(θ, w), where supθ,w |Rn(θ, w)| = oP (1). Indeed, the second
part of Lemma 1 allows us to replace Ŝn(µ̂θ, w) by Sn(µ̂θ, w) up to some uniformly
negligible remainder term. Next, observe that

1

n

n∑
i=1

∫ T(n)

0
µ̂θ(t, θ

′Zi)
2dw(t) =

1

n

n∑
i=1

∫ T(n)

0
µθ(t, θ

′Zi)
2dw(t)

+
1

n

n∑
i=1

∫ T(n)

0
[µ̂θ(t, θ

′Zi)
2 − µθ(t, θ′Zi)2]dw(t),

where the second term goes to zero uniformly in θ and w thanks to the uniform con-
vergence assumptions on µ̂θ. This shows that supθ,w |Mn,w(θ, µ̂θ)−Mn,w(θ, µθ)| = oP (1)
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and the uniform convergence of Mn,w(θ, µθ) is obtained following the path of the proof
of Theorem 2.
Asymptotic normality comes from the fact that

θ̂ − θ0 = −∇2
θM
−1
n,w(θ̃, µ̂θ̃)∇θMn,w(θ0, µ̂θ0).

The fact that

sup
w
‖∇2

θM
−1
n,w(θ̃, µ̂θ̃)−∇

2
θM
−1
w (θ0, µθ0)‖ = oP (1)

can be shown in the same way as in the proof of Theorem 2 using now the second
part of Lemma 1. The big issue consists of proving the asymptotic representation of
∇θMn,w(θ0, µ̂θ0). Write

∇θMn,w(θ0, µ̂θ0) = −2

[
Ŝn(∇θµ̂θ0(·, θ′0·), w)− 1

n

n∑
i=1

∫ T(n)

0
µ̂θ0(t, θ′0Zi)∇θµ̂θ0(t, Zi)dw(t)

]
.

Using the second part of Lemma 1, this can be rewritten as

∇θMn,w(θ0, µ̂θ0)

= ∇θMn,w(θ0, µθ0)

− 2

n

n∑
i=1

∫ τH

0
µ̄θ0(t, θ′0Zi)

λ1+λ2
(
µθ0(t, θ′0Zi)− Yi(t)

)∇θµθ0(t, Zi)−∇θµ̂θ0(t, Zi)

µ̄θ0(t, θ′0Zi)
λ1+λ2

dw(t)

+
2

n

n∑
i=1

∫ τH

0

µ̂θ0(t, θ′0Zi)− µθ0(t, θ′0Zi)

µ̄θ0(t, θ′0Zi)
λ1+λ2

µ̄θ0(t, θ′0Zi)
λ1+λ2∇θµθ0(t, Zi)dw(t)

+
2

n

n∑
i=1

∫ τH

0

(
µ̂θ0(t, θ′0Zi)− µθ0(t, θ′0Zi)

)(
∇θµ̂θ0(t, Zi)−∇θµθ0(t, Zi)

)
µ̄θ0(t, θ′0Zi)

2(λ1+λ2)µ̄θ0(t, θ′0Zi)
−2(λ1+λ2)

dw(t)

+R4n(w)

= ∇θMn,w(θ0, µθ0) +R1n(w) +R2n(w) +R3n(w) +R4n(w),

where R4n(w) comes from Lemma 1 and the change in the integration bound of [0, T(n)]

by [0, τH ]. Using the same arguments as in the proof of Theorem 2, we deduce that
supw ‖R4n(w)‖ = oP (n−1/2). Using the uniform convergence rates of µ̂θ0 and of ∇θµ̂θ0 ,
we get straightforwardly that supw ‖R3n(w)‖ = oP (n−1/2). Using the uniform convergence
of ∇θµ̂θ0 , we see that the term R1n can be decomposed into

R1n(w) = n−1
n∑
i=1

(
fw(Zi, Yi)− fn,w(Zi, Yi)

)
,

where fw and fn,w both belong (almost surely for n large enough) to the class G defined
in Assumption 9 and with supw ‖fw − fn,w‖∞ → 0 a.s. Therefore, using the asymp-
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totic equicontinuity of the Donsker class G (see e.g. Section 2.1.2 in Van der Vaart and
Wellner [1996]), this shows that

sup
w
‖R1n(w)−

∫ (
fw(z, y)− fn,w(z, y)

)
dPZ,Y (z, y)‖ = oP (n−1/2).

Moreover, it is clear that
∫

(fw(z, y) − fn,w(z, y))dPZ,Y (z, y) = 0 using the fact that
∇θµθ0(t, z)−∇θµ̂θ0(t, z) is a function of z only and that E[µθ0(t, θ′0Zi)− Yi(t)|Zi] = 0.
The term R2n(w) can be handled in the same way using now the Donsker class H in

Assumption 9, observing that µ̂θ0(t, θ′0z)−µθ0(t, θ′0z) is a function of θ′0z only and getting
from Lemma 5 in Supplementary Material, that E[∇θµθ0(t, Z)|θ′0Z] = 0.

3.4 Adaptive choice of w
The representations of Theorems 2 and 3 hold uniformly in w ∈ W. Therefore, consider

some data-driven measure ŵn ∈ W, tending to some asymptotic measure w0 in the sense
that

∫
φ(t)d{ŵn−w0}(t) tends to 0 in probability for all function φ in L1(dŵn)∩L1(dw0).

Moreover, assume that

sup
w∈W:w→w0

∣∣∣∣∣n−1
n∑
i=1

∫
φ(t;Ti, δi, Zi, Yi)d{w − w0}(t)

∣∣∣∣∣ = oP (n−1/2), (3.3)

for any function φ with E[φ(t;Ti, δi, Zi, Yi)] = 0. This assumption can easily be
fulfilled by considering a simple class of measures, ensuring that {(T,Z, δ, Y ) →
n−1

∑n
i=1

∫
φ(t;T, δ, Z, Y )dw(t) : w ∈ W} is a Donsker class of functions. In this sit-

uation, one can deduce that (for example in the semiparametric case),

θ̂(ŵ)− θ0 = Σ−1
w,sp

{
1

n

n∑
i=1

(∫ τH

0
[Yi(t)− µθ0(t, θ′0Zi)]∇θµθ0(t, Zi)dw0(t)

+

∫ τH

0

∫ t

0
ηs−(Ti, δi)E[∇θµθ0(t, Z)dµθ0(s, θ′0Z)]dw0(t)

)}
+R′n(ŵ), (3.4)

where R′n(ŵ) = oP (n−1/2). This can be done by combining the asymptotic representation
of θ̂(ŵ)− θ̂(w0) and of θ̂(w0)− θ0, and using (3.3) by studying the difference between the
two main terms.
The idea is to consider an asymptotically optimal measure w0. For example, suppose

that one is searching for an estimator that minimizes E[‖θ̂ − θ0‖2]. Denote Vw,sp(i) the
i−th diagonal element of the asymptotic covariance matrix Vw,sp. In view of our objective,
one wishes to consider w0 as the minimizer among measures W of n−1

∑d
i=1 Vw,sp(i).

In practice, ŵ can be taken as the minimizer over W of n−1
∑d

i=1 V̂w,sp(i), where
V̂w,sp denotes an estimated version of the asymptotic covariance matrix. The quantity
n−1

∑d
i=1 V̂w,sp(i) can be seen as an estimator of the mean-squared error of θ̂(w).

Such an adaptive weight function will converge towards w0 under mild conditions,
provided that there is some continuity over W of the map w → Vw,sp. Then, represen-
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tation (3.4) ensures that θ̂(ŵ) is asymptotically equivalent to the optimal estimator θ̂(w0).

3.5 Estimation of the variance
We show how to estimate the variance in the representation of Theorem 3 and we

propose an estimator of the mean squared error of θ0. Denote by ξn,w the term between
brackets in the representation of Theorem 3 so that

θ̂(w)− θ0 = Σ−1
w,sp ξn,w +Rn(w),

where supw∈W ‖Rn(w)‖ = oP (n−1/2). The quantity ξn,w can be estimated in the following
way

ξ̂n,w =
1

n

n∑
i=1

ψ̂(δi, Zi, Ti, Yi;w),

where

ψ̂(δ, Z, T, Y ;w) =

∫ T(n)

0

(
Y (t)− µ̂θ̂(t, θ̂

′Z)
)
∇θµ̂θ̂(t, Z)dw(t)

+

∫ T(n)

0

∫ t

0
η̂s−(T, δ)n−1

n∑
i=1

(
∇θµ̂θ̂(t, Zi)dµ̂θ̂(s, θ̂

′Zi)
)
dw(t),

η̂t(T, δ) =
(1− δ)I(T ≤ t)

1− Ĥ(T−)
−
∫ t

0

I(T ≥ s)dĜ(s)(
1− Ĥ(s−)

)(
1− Ĝ(s−)

)
and Ĥ is the empirical estimator of H.
Therefore, the quantity ∆w,sp can be estimated by

∆̂w,sp =
1

n

n∑
i=1

(
ψ̂(δ, Z, T, Y ;w)− 1

n

n∑
i=1

ψ̂(δ, Z, T, Y ;w)

)⊗2

,

where ⊗2 denotes the product of the matrix with its transpose. To consistently estimate
Σw,sp, we use

Σ̂w,sp =
1

n

n∑
i=1

∫ T(n)

0
∇θµ̂θ̂(t, Zi)∇θµ̂θ̂(t, Zi)

′dw(t).

A consistent estimator of Vw,sp can then be computed from V̂w,sp = Σ̂−1
w,sp ∆̂w,sp Σ̂−1

w,sp.
The consistency of V̂w,sp comes from the uniform consistency of the estimator Ĥ and
Ĝ (and of Kaplan-Meier integrals with respect to Ĝ), from the consistency of θ̂, and
from the uniform consistency of the nonparametric estimators of µ̂θ and of its partial
derivatives.
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3.6 Estimation of the nonparametric part
In the semiparametric model, estimation of the finite dimensional parameter θ0 is only

the first step of the method. With our estimator θ̂ at hand, we wish to estimate the
conditional mean function µ(t|z). Different strategies can be proposed to perform this
estimation. For this final estimator, there is no theoretical need to use the same kind
of nonparametric estimator as in the computation of θ̂. Proposition 4 below states that,
under some convergence assumptions for the nonparametric estimator used in this second
step, the asymptotic behavior of the final semiparametric estimator of µ is identical to the
asymptotic behavior of a purely nonparametric estimator in the case where θ0 is exactly
known.

Proposition 4. Let Θ∗ be some neighborhood of θ0, and let T be a set on which
supθ∈Θ∗,t∈T ,z∈Z ‖∇θµθ0(t, z)‖ < ∞. Let µ̂θ be a family of nonparametric estimators of
µθ satisfying the assumption

sup
θ∈Θ∗,t∈T ,z∈Z

‖∇θµ̂θ(t, z)−∇θµθ(t, z)‖ = oP (1). (3.5)

Then, we have

sup
t∈T ,z∈Z

|µ̂θ̂(t, θ̂
′z)− µ̂θ0(t, θ′0z)| = OP (n−1/2).

Proof. This is a direct consequence of a Taylor expansion of µ̂θ̂ around θ0. From Theorem
3 we have θ̂ − θ0 = OP (n−1/2). Then, the boundedness of ∇θµθ0(t, z) and the uniform
convergence in assumption (3.5) give the result.

As explained in Section 2.2.4, we propose to simultaneously select the adaptive band-
width ĥ and the index parameter θ̂ in the following way:

(θ̂, ĥ) = arg min
θ∈Θ,h∈H

Mn,w(θ, µ̂θ,h). (3.6)

The uniform in bandwidth consistency of the kernel estimators we use (see Section 6.3)
ensures us that θ̂ has the same asymptotic properties as in Theorem 3. On the other hand,
Proposition 5 below shows that the adaptive bandwidth ĥ is asymptotically equivalent
to the bandwidth we could obtain using a classical cross-validation technique in the case
where the parameter θ0 is exactly known.

Proposition 5. For some positive constants a, b and α, let H = [an−α, bn−α] be a set of
bandwidths satisfying Assumption 10 and let

h0 = arg min
h∈H

Mn,w(θ0, µ̂θ0,h).

Under the assumptions of Theorem 3 and provided that suph∈H,t∈R+,z∈Z |µ̂θ,h(t, θ′z) −
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µθ,h(t, θ′z)| = oP (1), we have

ĥ/h0 → 1 a.s.

Proof. Define φ(h/h0) = Mn,w(θ0, µ̂θ0,h) and φn(h/h0) = arg minθ∈ΘMn,w(θ, µ̂θ,h). By
definition of h0 and ĥ we have arg minx∈[a,b] φ(x) = 1 and ĥ/h0 = arg minx∈[a,b] φn(x).
Now write

φn(x) = φ(x)− 2

n

n∑
i=1

∫ τH

0
Ŷi(t)

(
µ̂θ,xh0(t, θ′Zi)− µ̂θ,h0(t, θ′Zi)

)
dw(t)

+
1

n

n∑
i=1

∫ τH

0

(
µ̂θ,xh0(t, θ′Zi)

2 − µ̂θ,h0(t, θ′Zi)
2
)
dw(t) +Mn,w(θ, µ̂θ,h0).

Using Lemma 1 and the uniform in bandwidth consistency of µ̂θ,h, the second and third
terms in the decomposition tend to zero uniformly in x. On the other hand, the last term
does not depend on x. This shows that ĥ/h0 → 1 a.s.

4 Simulations
We present here some empirical evidence of the good behavior of our semiparametric

estimation procedure for finite sample sizes.
The variables Di are generated according to a Weibull distribution with parameter
(10, 1.1) and we consider 4-dimensional covariates Zi ∼ ⊗4U [1, 2] for i = 1, . . . , n. Condi-
tionally on Zi, the processes N∗i (·) are generated in the following way: we first generate
homogeneous Poisson processes Ñi(·) with intensity θ′0Zi+5 where θ0 = (1, 1.6, 1.25, 0.7)′

and then compute N∗i (t) = Ñi(t ∧Di) for i = 1, . . . , n. This ensures that

E[N∗i (t)|Zi] = (θ′0Zi + 5)

∫ t

0
(1− F (s−))ds, i = 1, . . . , n,

such that condition (2.2) is verified. The censoring distribution is selected to be Weibull
with parameters (4, λ). Taking λ = 1.38 or λ = 1 leads respectively to 30% or 70%

of censoring and an average of 11.5 or 10 recurrent events per sample. We decide to
estimate µθ with the kernel estimator defined in (2.10) with the Epanechnikov kernel.
In our simulation study, we emphasize the impact of the two parameters involved in our
semiparametric procedure, namely the bandwidth of the nonparametric kernel estimators
and the measure w.
First, we consider the case of a fixed bandwidth and show how the adaptive choice

of ŵ can improve the estimation performance of the parameter θ0. The kernel estimator
is computed using a bandwidth h0 = 1.1. We consider a set of discrete measures w(·)
supported on I = {0.1, 0.2, . . . , 1.2}. The range of values of I is chosen accordingly to the
range of values of the recurrent event times such that I is a representative subset of the
whole trajectory of N(·). With this choice, for any function f , the integral with respect
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Table 1. Biases, variances and MSE of θ̃, θ̂ŵ,h0
, θ̂cox and θ̂AFT for 30% of censored data

p = 30% Bias Variance MSE

θ̃

0.0816

0.0897

0.0289


 0.0938 −0.0122 −0.0369

−0.0122 0.0731 −0.0211

−0.0369 −0.0211 0.0872

 0.2697

θ̂ŵ,h0

0.0451

0.0439

0.0291


 0.0129 −0.0034 −0.0064

−0.0034 0.0122 −0.0054

−0.0064 −0.0054 0.0160

 0.0459

θ̂cox

−1.4615

−1.1464

−0.6454


 0.0190 −0.0002 −0.0011

−0.0002 0.0183 0.0006

−0.0011 0.0006 0.0191

 3.9232

θ̂AFT

−5.7300

−6.4569

−8.2406


 1.7817 −0.7809 −1.3722

−0.7809 1.7994 −0.9062

−1.3722 −0.9062 3.0520

 149.0650

to w reduces to a finite sum. Indeed, we have∫
f(t)dw(t) =

∑
k∈I

f(k)w({k}).

Moreover, we consider an adaptive choice of the weight w among the following family
{wa, a = (a1, . . . , a4) with ai ∈ {0.25, 0.5, 0.75, 1}, i = 1, . . . , 4} with

wa({k}) =

1 for k = 0.1, . . . , 0.8

ai for k = 0.8 + i, i = 1, . . . , 4

which makes 256 possible choices. The intuition is that our procedure should allocate
smaller weights to large values of Ti since the behaviour of the Kaplan-Meier estimator is
known to be less effective in this part of the distribution (and contributes significantly to
the variance). Our estimator θ̂ŵ,h0 is then compared to the estimator θ̃ obtained for the
measure w0 which puts mass 1 at every point of I. We also compare our estimator θ̂ŵ,h0
to the estimators θ̂cox and θ̂AFT obtained respectively under Model (1.1) and Model (1.3)
by Andersen and Gill [1982] and Ghosh [2004].
In Tables 1 and 2, we report our results over 1 000 simulations of samples of size 100

for two different rates of censoring (p = 30% and p = 70%). Recalling that the first com-
ponent of θ0 is imposed to be one, we only have to estimate the three other components.
For each estimator, the Mean Squared Error (MSE) E(‖θ̂−θ0‖2) is decomposed into bias
and variance.
We also computed the average weights of ŵ for the last four points of I. For 30%

of censoring, we have: E[ŵ({0.9})] = 0.685, E[ŵ({1})] = 0.579, E[ŵ({1.1})] = 0.586

and E[ŵ({1.2})] = 0.569 and for 70% of censoring, E[ŵ({0.9})] = 0.684, E[ŵ({1})] =
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Table 2. Biases, variances and MSE of θ̃, θ̂ŵ,h0
, θ̂cox and θ̂AFT for 70% of censored data

p = 70% Bias Variance MSE

θ̃

0.0957

0.0995

0.0155


 0.1507 −0.0067 −0.1060

−0.0067 0.1083 −0.0305

−0.1060 −0.0305 0.1782

 0.4566

θ̂ŵ,h0

0.0460

0.0457

0.0262


 0.0179 −0.0031 −0.0093

−0.0031 0.0141 −0.0067

−0.0093 −0.0067 0.0210

 0.0579

θ̂cox

−1.4633

−1.1407

−0.6370


 0.0218 0.0000 −0.0008

0.0000 0.0223 0.0004

−0.0008 0.0004 0.0211

 3.9132

θ̂AFT

−5.8857

−6.5324

−7.8799


 1.3032 −0.6241 −0.9075

−0.6241 1.4428 −0.7425

−0.9075 −0.7425 2.1692

 144.3226

0.606, E[ŵ({1.1})] = 0.593 and E[ŵ({1.2})] = 0.538. Clearly, choosing the measure from
the data improves both the bias and the variance of our estimator. Moreover the weights
of ŵ({k}) get smaller for large values of k, especially when the proportion of censored
data is high. Consequently, the adaptive measure seems to have a significant impact on
the quality of the estimation of θ0. Note that even if the Cox estimator has very small
variance components, our estimators have significantly smaller biases and MSE than the
Cox and AFT estimators. This suggests that the Cox and AFT models do not fit well the
data and consequently give really poor estimates of θ0. Since our model assumptions are
less restrictive, this explains why our estimator outperforms the Cox and AFT estimators.
Next, we show how the choice of the parameter h influences the quality of estimation.

We consider the fixed measure w0 which puts the same weights 1 at each point. The
bandwidth ĥ is chosen adaptively in a regular grid of length 0.05 in the set [0.2, 1.8]. The
average bandwidths over the 1 000 samples were computed and equal to 1.141 for 30% of
censoring and 1.126 for 70% of censoring.
The performance of the resulting estimator θ̂w0,ĥ

presented in Table 3 is then compared
with the estimators of the previous tables. We observe significant improvement of its MSE
compared to θ̃. As previously, our estimator outperforms θ̂cox and θ̂AFT in term of bias and
MSE. We also see that choosing an adaptive bandwidth with a fixed measure or choosing
an adaptive measure with a fixed bandwidth leads to a similar quality of estimation of
θ0. However this is no longer true for a high censoring rate: for 70% of censored data, the
MSE of θ̂ŵ,h0 is almost 2 times lower than the MSE of θ̂w0,ĥ

. This shows that the adaptive
measure is well suited to the case of censored data: when a large proportion of recurrent
events are censored the adaptive measure can compensate the lack of observations due
to censoring and allows us to obtain a very accurate estimation of θ0.
More simulations results are presented in the Supplementary Material paper with a

different setup. We consider a recurrent event process where the number of events in a
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time interval has a negative binomial distribution. This entails an increase in the variance
estimates but other conclusions are similar.

Table 3. Biases, variances and MSE of θ̂w0,ĥ
for 30% and 70% of censored data

Bias Variance MSE

θ̂w0,ĥ
, p = 30%

0.0405

0.0384

0.0393


 0.0143 −0.009 −0.0108

−0.009 0.0143 −0.0095

−0.0108 −0.0095 0.0150

 0.0483

θ̂w0,ĥ
, p = 70%

0.0395

0.0383

0.0362


 0.0391 −0.0228 −0.0113

−0.0228 0.0208 −0.0094

−0.0113 −0.0094 0.0357

 0.1099

5 Conclusion
We proposed a new procedure to estimate the conditional cumulative mean function

of a recurrent event process. We considered both parametric and semiparametric models
for the conditional cumulative mean function. Our semiparametric single-index model
can be seen as a generalization of both the Cox model and the accelerated failure time
model. Moreover, a new feature of our procedure stands in the measure w involved in our
estimators which is designed to prevent us from problems in the tail of the distribution
due to the presence of censoring. Then, we proposed a data-driven method to choose this
measure adaptively. Our criterion is based on the minimization of the mean squared error
for the estimation of θ0 but our procedure is flexible enough to allow the use of any other
criteria more adapted to the context. For example, we could consider a criterion directly
based on the error of the estimation of µ.
In this work, we mainly focused on kernel estimators for estimating the nonparametric

part of our model, providing methods to choose the smoothing parameter from the data.
Nevertheless, all our results are valid for any nonparametric estimator of µθ provided
it satisfies some convergence properties (see Assumption 7). Hence, other kinds of
estimators may be used provided they satisfy these conditions.

6 Appendix
6.1 Exposition and discussion of assumptions
In this section we state the technical assumptions on which the proofs of the results of

Section 3 are based. We first present some general properties on a class of functions in
order to use empirical processes theory.
Let F = {f : (t, z) ∈ [0, τH ] × Z 7→ f(t, z)} be a class of functions with envelope F̄
i.e. such that |f(t, z)| ≤ |F̄ (t, z)| for every (t, z) and f . Define, for a probability measure
Q, the norm ‖ · ‖p,Q as the norm of Lp(Q). The covering number of the class F for the
measure Q denoted by N(ε,F , ‖ · ‖p,Q) is the smallest number of Lp(Q)−balls of radius
ε needed to cover the set F . The uniform covering number is defined as N(ε,F , ‖ · ‖p) =
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supQN(ε‖F̄‖p,Q,F , ‖ · ‖p,Q) where the supremum is taken over all probability measures.
In what follows, we say that a class of functions F is a ‖ · ‖p − V C−class of functions if
there exists two positive constants γ and c such that N(ε,F , ‖ · ‖p) ≤ cε−γ . Moreover,
a class of functions for which the uniform law of large number holds true is said to be
Glivenko Cantelli and a class of functions for which the uniform central limit theorem
holds true is said to be Donsker. We refer the reader to Van der Vaart and Wellner [1996]
for more details on these definitions.
A class of functions F is said to satisfy one of the following properties if the corresponding
condition holds.

Property 1. For a class of functions F = {f : (t, z) ∈ [0, τH ] × Z 7→ f(t, z)} and for
any τ < τH , define

Fτ = {f(t, ·), t ∈ [0, τ ]},

which is a set of functions defined on Z. Then, for any τ < τH , Fτ is a V C-class of
functions.

Property 2. For a class of functions F = {f : (t, z) ∈ [0, τH ] × Z 7→ f(t, z)}, the
family of functions defined by {(z, y) 7→

∫ τH
0 y(t)f(t, z)dw(t), f ∈ F , w ∈ W} is Glivenko

Cantelli.

In Section 4 in Supplementary material, we give a general type of sufficient conditions
to fulfill these properties. It is easy to check that these technical assumptions are verified
when the following conditions hold simultaneously:

- F is a class of polynomial functions f(t, z) (with bounded coefficients),
- dE[Y (t)] = g(t)dt for some polynomial function g(t),
- the class of measures is of the form W = {w : dw(t) = W (t)dw̃(t)} where W (t) is a
decreasing function (of order t−k for k sufficiently high or exponential) and where w̃
belongs to a class of monotone positive uniformly bounded functions sufficiently small
(for example, piecewise constant bounded functions with a finite number of jumps).

Property 3. Let F = {fθ : (t, z) ∈ [0, τH ]×Z 7→ fθ(t, z), θ ∈ Θ} be a family of functions
indexed by θ. For any fθ1 , fθ2 ∈ F and z ∈ Z, we have

sup
w∈W

∫ τH

0
‖fθ1(t, z)− fθ2(t, z)‖dw(t) ≤ c‖θ1 − θ2‖,

where c is a positive constant.

We now introduce the assumptions needed to derive the asymptotic normality of θ̂ in the
parametric and semiparametric models.

Assumptions for the parametric model.
In the estimation procedures, we consider integrated versions of the rescaled process with

24



April 24, 2014 Statistics: A Journal of Theoretical and Applied Statistics BouazizGeffrayLopez

respect to a measure w belonging to a class of measures W. Detailed comments on this
family and its role in the statistical procedure are discussed in Section 3.4. We need the
following assumption for this class of measures.

Assumption 3. Assume there exists some probability measure w0 and a positive constant
c0 such that, for any w ∈ W, ∫ τH

t
dw(s) ≤ c0W0(t),

where W0(t) =
∫ τH
t dw0(s) can be written as

W0(t) = W1(t)W2(t)

where W1 and W2 are two positive and non-increasing functions satisfying

(1)
∫ τH

0 W 2
1 (t)(1− F (t−))−1(1−G(t−))−2dG(t) <∞,

(2)
∫ τH

0 W2(t)E[dN∗(t)] <∞,
(3) limt→τH W2(t) = 0.

In particular, Assumption 3 holds when all the measures w have their support included
in a common compact subspace strictly included in [0, τH ]. On the other hand, since the
functionW1 controls 1− Ĝ(s−) in Ŷ (s) for s in the vicinity of the tail of the distribution,
Assumption 3 also allows to consider measures w which are supported in the whole
interval [0, τH ]. Taking W1(t) = (1 − H(t−))1/2(1 − G(t−))ε for some ε > 0 would be
sufficient to obtain (1). Moreover, in the case where τH = ∞, if we suppose that, for
β1 > 0, we have E[N∗(t)] ∼ β1t when t → ∞, we could take for example W2(t) = t−β2

for β2 > 1 to fulfill (2) and (3).

We also need the following Hölder condition on the process N . This is a technical as-
sumption used in the proof of our main lemma.

Assumption 4. Suppose there exists γ > 0 such that

E

[
sup

t≤τ,t′≤τ

|N(t)−N(t′)|
|t− t′|γ

]
<∞.

Let ∇θµ0(s, z; θ1) (resp. ∇2
θµ0(s, z; θ1)) denote the vector of partial derivatives (resp.

the Hessian matrix) of µ0(s, z; θ) with respect to all the components of θ evaluated at θ1.

The following assumption can be understood as a regularity assumption on the regression
model.

Assumption 5. Assume that, for all w ∈ W, the matrix
Σw,p =

∫ τH
0 E[∇θµ0(t, Z, θ0)∇θµ0(t, Z, θ0)′]dw(t) is invertible. Moreover, assume that the

classes of functions {µ0(·, ·; θ), θ ∈ Θ}, {∇θµ0(·, ·; θ), θ ∈ Θ} and {∇2
θµ0(·, ·; θ), θ ∈ Θ}

satisfy Properties 1, 2 and 3.
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Additional assumptions for the semiparametric model.
The following assumption is similar to Assumption 5. Here,∇θµθ1(s, z) (resp.∇2

θµθ1(s, z))
denotes the vector of partial derivatives (resp. the Hessian matrix) of µθ(s, θ′z) with re-
spect to all the components of θ evaluated at θ1. Note that the gradient vector ∇θµθ1(s, z)

does not only depend on θ′z but also depends on the whole vector z. We give an explicit
expression of this gradient in Lemma 5, in Supplementary material.

Assumption 6. Assume that, for all w ∈ W, the matrix
Σw,sp =

∫ τH
0 E[∇θµθ0(t, Z)∇θµθ0(t, Z)′]dw(t) is invertible. Moreover, assume that the

classes of functions {µθ(·, ·), θ ∈ Θ}, {∇θµθ(·, ·), θ ∈ Θ} and {∇2
θµθ(·, ·), θ ∈ Θ} satisfy

Properties 1, 2 and 3.

This assumption is hard to check in practice, since the family of functions {µθ : θ ∈ Θ}
may have a complex form, which may be impossible to determine explicitly without
additional assumptions on the model. Nevertheless, such kind of assumptions are com-
monplace in the single-index literature and cannot easily be removed. Indeed, they ensure
some regularity of the map θ → µθ(·, ·) with respect to θ. Without such regularity as-
sumptions, performing single-index estimation is hopeless, since any error of estimation
of θ0 will be amplified by the irregularity of the map θ → µθ(·, ·). In practice, looking
at the stability of the estimated functions µ̂θ for different values of θ may inform if this
assumption is likely to hold.
In order to enable a data-driven procedure, we need uniform convergence properties for

the nonparametric estimators µ̂θ.

Assumption 7. Define µ̄θ(t, u) = sup(µθ(t, u), 1).

(1) Assume that

sup
t≤T(n),θ∈Θ,z∈Z

∣∣∣∣ µ̂θ(t, θ′z)− µθ(t, θ′z)µ̄θ0(t, θ′0z)
λ1+λ2

∣∣∣∣ = oP (1),

sup
t≤T(n),θ∈Θ,z∈Z

∥∥∥∥∇θµ̂θ(t, z)−∇θµθ(t, z)µ̄θ0(t, θ′0z)
λ1+λ2

∥∥∥∥ = oP (1),

sup
t≤T(n),θ∈Θ,z∈Z

∥∥∥∥∇2
θµ̂θ(t, z)−∇2

θµθ(t, z)

µ̄θ0(t, θ′0z)
λ1+λ2

∥∥∥∥ = oP (1),

where λ1, λ2 are such that λ1 + λ2 ≥ 1.

(2) Assume also that

sup
t≤T(n),z∈Z

∣∣∣∣ µ̂θ0(t, θ′0z)− µθ0(t, θ′0z)

µ̄θ0(t, θ′0z)
λ1+λ2

∣∣∣∣ = OP (εn),

sup
t≤T(n),z∈Z

∥∥∥∥∇θ0 µ̂θ0(t, z)−∇θµθ0(t, z)

µ̄θ0(t, θ′0z)
λ1+λ2

∥∥∥∥ = OP (ε′n),

where εnε′n = oP (n−1/2).
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Assumption 8. Assume that

sup
z∈Z

∫ τH

0
µθ0(t, θ′0z)

2(λ1+λ2)dw(t) <∞,

where λ1, λ2 were defined in Assumption 7.

The following assumption is essential to the empirical processes theory used in our proofs.
We assume that the nonparametric estimators and µθ0 belong to some Donsker classes of
functions.

Assumption 9. Assume that there exists some Donsker classes of functions G and H
such that for all w ∈ W

(z, y) 7−→
∫ τH

0

(
µθ0(t, θ′0z)− y(t)

)
∇θµθ0(t, z)dw(t) ∈ G,

z 7−→
∫ τH

0
µθ0(t, θ′0z)∇θµθ0(t, z)dw(t) ∈ H.

Moreover, assume that, almost surely for n large enough,

(z, y) 7−→
∫ τH

0
(µθ0(t, θ′0z)− y(t))∇θµ̂θ0(t, z)dw(t) ∈ G,

z 7−→
∫ τH

0
µ̂θ0(t, θ′0z)∇θµθ0(t, z)dw(t) ∈ H.

To give examples of such kind of classes, consider F andW as defined in the discussion
following Property 2 and suppose, in addition, that the functions (t, u) → W0(t)f(t, u)

for f ∈ F (f is defined on R2 since θ′0z ∈ R) are twice continuously differentiable with
bounded derivatives up to order 2.
Defining F ′ = {(u, y) →

∫ τH
0 (f1(t, u) − y(t))f2(t, u)dw(t), w ∈ W, f1, f2 ∈ F}, it

follows from the results of Section 4 in Supplementary material and from the decompo-
sition of the gradient vector ∇θµθ0(t, z) obtained in Lemma 5 that we can decompose∫ τH

0 (µθ0(t, θ′0z)− y(t))∇θµ̂θ0(t, z)dw(t) = φ1(θ′0z, y) + zφ2(θ′0z, y), with φ1 and φ2 in F ′.
A similar decomposition can be used on

∫ τH
0 µ̂θ0(t, θ′0z)∇θµθ0(t, z)dw(t). Hence, we can

consider the class of functions H = G = F ′ + zF ′.

6.2 Proof of Lemma 1
Let

S
T(n)
n (f, w) =

1

n

n∑
i=1

∫ T(n)

0
Yi(t)f(Zi, t)dw(t).
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Write

Ŝn(f, w) = S
T(n)
n (f, w) +

1

n

n∑
i=1

∫ T(n)

0
f(Zi, t)

∫ t

0

(
Ĝ(s−)−G(s−)

)
dNi(s)(

1−G(s−)
)(

1− Ĝ(s−)
)dw(t)

= S
T(n)
n (f, w) +Rn(f, w).

Decompose f into its positive and negative parts denoted respectively by f+ and f−.
The expectations of the two resulting sums S

T(n)
n (f+, w)−Sn(f+, w) and S

T(n)
n (f−, w)−

Sn(f−, w) go to zero faster than n−1/2 using Lebesgue’s dominated convergence. This
entails that

sup
f∈F ,w∈W

|ST(n)
n (f, w)− Sn(f, w)| = oP (n−1/2).

Let τ < τH and define wτ (t) = w(t)I(t ≤ τ). On [0, τ ], we use the asymptotic i.i.d.
expansion of the Kaplan-Meier estimator Ĝ proposed by Gijbels and Veraverbeke [1991]
which can also be deduced from Stute [1995]:

Ĝ(t)−G(t)

1−G(t)
=

1

n

n∑
j=1

ηt(Tj , δj) + R̃n(t),

where supt≤τ |R̃n(t)| = OP (n−1 log n) and

ηt(T, δ) =
(1− δ)I(T ≤ t)

1−H(T−)
−
∫ t

0

I(T ≥ s)dG(s)(
1−H(s−)

)(
1−G(s−)

) .
Moreover, recall that supt≤τ |Ĝ(t) − G(t)| = OP (n−1/2) (see Gill [1983], Theorem 2.1)
and that supt≤τ (1−G(t))(1− Ĝ(t))−1 = OP (1) (see Gill [1983], Lemma 2.6). Then, write

Rn(f, wτ ) =
1

n2

∑
i,j

∫ T(n)

0
f(Zi, t)

∫ t

0

ηs−(Tj , δj)dNi(s)

1−G(s−)
dwτ (t) +R′n(f, wτ ).

Using the fact that F is an uniformly bounded class, that
∫
dwτ ≤ c0 from Assumption

3 and that E[Ni(τ)] < ∞ for all τ, we deduce that supf,w |R′n(f, wτ )| = OP (n−1). The
first term in Rn(f, wτ ) can be rewritten as

1

n

n∑
j=1

∫ T(n)

0

∫ t

0
ηs−(Tj , δj)E

[
f(Z, t)dµ(s|Z)

]
dwτ (t)+

∫  1

n2

∑
i,j

ψf,t(Zi, Ni, Tj , δj)

 dwτ (t),

where

ψf,t(Zi, Ni, Tj , δj) =

∫ t

0
ηs−(Tj , δj)

{
f(Zi, t)dNi(s)

1−G(s−)
− E

[
f(Z, t)dµ(s|Z)

]}
.

Observe that, with probability tending to one, the upper bound T(n) in the integrals can
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be replaced by τ < τH . Let f, f ′ ∈ F and t, t′ ∈ [0, τ ]. We have

|ψf,t(Zi, Ni, Tj , δj)− ψf
′,t′(Zi, Ni, Tj , δj)| ≤ cτ

(
‖f − f ′‖∞Ni(τ)

+|t− t′|γ sup
t,t′≤τ

Ni(t)−Ni(t
′)

|t− t′|γ

)
, (6.1)

where cτ < ∞ and γ > 0. Let Hτ denote the set of all functions ψf,t when f ranges F
and t ranges [0, τ ]. It follows from (6.1) and Assumption 4 that Hτ is a ‖ · ‖2−VC-class
of functions. From this, using the Glivenko-Cantelli property of Hτ ,

sup
f,t≤τ

∣∣∣∣∣ 1

n2

n∑
i=1

ψf,t(Zi, Ni, Ti, δi)

∣∣∣∣∣ = OP (n−1)

and

sup
f,t≤τ

∣∣∣∣∣∣ 1

n2

∑
i 6=j

ψf,t(Zi, Ni, Tj , δj)

∣∣∣∣∣∣ = OP (n−1),

since this can be seen as the supremum of a second order degenerate U−process indexed
by Hτ (see Sherman [1994]). This leads to the i.i.d. representation for Ŝn(f, wτ ) for any
τ < τH .

Similarly, write

Ŝn(f̂ , wτ ) = S
T(n)
n (f̂ , wτ ) +Rn(f̂ − f, wτ ) +Rn(f, wτ )

and using the fact that supf∈F ‖f − f̂‖∞ = oP (1) and that supt≤τ |Ĝ(t) − G(t)| =

OP (n−1/2), we deduce that supf,w |Rn(f̂ − f, wτ )| = oP (n−1/2). The representation for
Ŝn(f̂ , wτ ) follows.
Now, we make τ tend to τH . Let P̂n(f, w) = Ŝn(f, w) − ST(n)

n (f, w) and P τn (f, w) =

Ŝn(f, wτ )− ST(n)
n (f, wτ ). Since the class F is uniformly bounded, we get

|P̂n(f, w)− P τn (f, w)| ≤ M

n

n∑
i=1

∫ T(n)

τ

∫ t

0

|Ĝ(s−)−G(s−)|(
1−G(s−)

)(
1− Ĝ(s−)

)dNi(s)dw(t)

≤ M ′

n

n∑
i=1

∫ T(n)

0

W0(s ∨ τ)|Ĝ(s−)−G(s−)|dNi(s)(
1−G(s−)

)(
1− Ĝ(s−)

) ,

(with a∨ b denoting the maximum between a and b) where the last inequality is obtained
from Fubini’s theorem and Assumption 3. From Theorem 1.2 in Gill [1983], Assumption
3 and the fact that supt≤T(n)

(1 − G(t−))(1 − Ĝ(t−))−1 = OP (1) (see again Gill [1983],
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we get that

|P̂n(f, w)− P τn (f, w)| ≤ An
n

n∑
i=1

∫ T(n)

0

W2(s ∨ τ)dNi(s)

1−G(s−)
,

where An = OP (n−1/2). The result follows from Lemma 6 in Supplementary material.

6.3 Assumptions for the uniform convergence of the nonparametric estimators

In the supplementary material, we show that the kernel estimator µ̂θ,h defined by (2.10)
satisfies the convergence rates required by Assumption 7. This requires the following
assumption on the kernel and the bandwidth.

Assumption 10. Assume that

(1) K has a compact support, say [−1, 1],
∫
RK(s)ds = 1 and supx |K(x)| <∞,

(2) K is a twice differentiable and second-order kernel with derivatives of order 0, 1 and
2 of bounded variation,

(3) K := {K
(
(x− ·)/h

)
: h > 0, x ∈ Rd} is a pointwise measurable class of functions,

(4) h ∈ Hn ⊂ [an−α, bn−α] with a, b > 0 and α ∈ (1/8, 1/5).

From the definition of our estimator, problems arise when studying µ̂θ,h for t in the tail
of the distribution. This is a common problem when studying Kaplan-Meier estimators
but it can be circumvented by some moment conditions on the response and censoring
distribution. For instance, in the classical censored framework, Stute [1995] used the
function CG to compensate the bad behavior of the Kaplan Meier estimator in the tail of
the distribution. Therefore we also require the following assumption, which gives a similar
moment condition but adapted to our recurrent event context.

Assumption 11. Assume that, for some ε > 0,

sup
t,u

CG(t)7/20+ε

µ̄θ0(t, u)λ1
<∞

and

sup
t,u

∫ t
0

(
1−G(s−)

)
E[N∗(s)dN∗(s)](

1−G(t−)
)2
µ̄θ0(t, u)2λ2

<∞,

where λ1 and λ2 are defined in Assumption 3.

These conditions allow us to consider a process N∗ and variables D and C that are
supported on the whole interval [0, τH ]. However they will hold true only if there is enough
information on the recurrent event process in the tails of the distribution. For further
illustration take µkθ0(t, u) ∼ ck(1−G(t))−β1 , for k = 1 and 2, for t in a neighborhood of
τH , u → ∞ and where c1, c2, β1 are three positive constants. Take also, for c3 > 0 and
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β2 > 0, 1 − F (t) ∼ c3(1 − G(t))β2 for t in a neighborhood of τH . Then it can be shown
that these conditions are verified for example in the case β1 > 1, β2 = 1 and λ1 = λ2 = 1.
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