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Abstract. In this paper, we consider the problem of estimating the intensity of

a recurrent event process observed under a standard censoring scheme. We first

propose a collection of kernel estimators for which we provide MSE and MISE

bounds. Then, we describe and study an adaptive procedure of bandwidth selec-

tion, in the spirit of Goldenshluger and Lepski (2010) and we prove an oracle type

bound for both the MSE and the MISE of the final estimator. The method is

illustrated by simulation experiments.
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1. Introduction

Recurrent event data arise in many fields such as medicine, insurance, economics

and reliability. Medical examples include infections in HIV-infected subjects, tumor

recurrences in cancer patients or epileptic seizures of patients. Such repeated events

impact on the quality of life of the patients and also increase their risk of death.

Therefore it becomes of natural interest to study the rate function of the recurrent

event process which represents the instantaneous probability of experiencing a re-

current event at a given time. In this paper, we propose a new kernel estimator

of the rate function when the recurrent event process is subject to right censoring

and a terminal event is present. Then, we study the finite sample properties of

this nonparametric estimator and develop a method to choose the bandwidth using

data-driven techniques.

Regression methods have been widely studied to estimate the cumulative mean

function or the rate function of the recurrent event process. For instance, Andersen
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(∗∗∗): LSTA, University Pierre et Marie Curie.
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and Gill [2] considered a Cox model in presence of right censoring and they studied

the intensity of the recurrent process under a Poisson assumption. In the absence

of terminal events, Pepe and Cai [18] and Lin et al. [15] performed estimation

of the regression parameters in a more general model, taking into account time

dependent covariates. Ghosh and Lin [10, 11] extended these results to the presence

of terminal events and derived asymptotic properties of the regression parameter

estimates. Finally, Bouaziz et al. [5] studied the cumulative mean function through

a single-index assumption which can be seen as a generalization of the previous

models. Asymptotic results on the parameter estimates were derived and data-

driven techniques were used.

However, all these approaches rely on a modelisation assumption on the mean

or the rate functions which may not hold in practice. In a more flexible way, non-

parametric procedures were considered by several authors. In presence of censored

data and without the Poisson assumption, Nelson [17] and Lawless and Nadeau [14]

introduced an estimator of the cumulative mean function and derived a robust es-

timator of its variance. They also obtained confidence intervals which enable them

to compare mean functions in a two-sample testing. Then, the theoretical proper-

ties of this estimator were derived in Ghosh and Lin [9]. In their main result, the

cumulative mean function is proved to converge weakly to a zero mean Gaussian

process. More recently, Dauxois and Sencey [8] studied a model of recurrent events

with competing risks and a terminal event. They performed two-sample tests on the

rate function although their estimation procedure did not need estimation of this

function.

Few works using smoothing approach were also introduced in this framework.

Bartoszyński et al. [3] briefly presented a kernel estimator of the rate function when

the recurrent events were supposed to be distributed according to a Poisson process

and the censored times constant. Then, Chiang et al. [6] extended their results to a

more general setting where no Poisson assumption is made, no terminal events are

considered and the censoring variables are random, but observed. They studied two

types of kernel estimator of the rate function and gave asymptotic results for both

estimators. Mainly, the asymptotic normality is proved and confidence intervals

are derived using a bootstrap method, where theoretical arguments are provided to

validate their procedures. Another kind of smoothing estimator was also introduced

in Bouaziz et al. [5] to estimate the cumulative mean function when covariables and

terminal events are present.
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In this paper, we propose a new kernel estimator of the rate function, the deriva-

tive of the cumulative mean function, in a nonparametric context, with unobserved

random censoring variables and terminal events. For this estimator, we develop an

adaptive procedure to select the bandwidth, based on the recent work of Golden-

shluger and Lepski [12]. We establish oracle inequalities, for the L2-risk and the

integrated L2-risk of our estimator with a data-driven choice of the bandwidth.

This is the first non-asymptotic result in this setting. In addition, the data-driven

procedure is easily implementable.

The paper is structured as follows. After presenting the recurrent event model

in the next section, we introduce our estimation procedure and infer a kernel-type

estimator of the rate function in Section 3.1. In Sections 3.2 and 3.3 we give Mean

Squared Error (MSE) and Mean Integrated Squared Error (MISE) bounds of the

estimator for a fixed bandwidth. An adaptive procedure of bandwidth selection is

then presented in Section 4. In particular, we derive our main result, an oracle

bound for both the MSE and the MISE of our rate function estimator. A simulation

study is conducted in Section 5 in order to assess the practical properties of the

method. We also provide a comparison with a bootstrap method adapted from [6].

Finally, a few concluding remarks gathered in Section 6 end our presentation. The

main proofs are detailed in Section 7 and some technical results are postponed to

the appendix in Section 8.

2. Notations and first assumptions

2.1. Notations. In the following, for a real q ≥ 1 and for a function f : R 7−→ R
such that |f |q is integrable or bounded, we denote by

‖f‖q =

(∫
|f(x)|qdx

)1/q

and ‖f‖∞ = sup
x∈R
|f(x)|.

For simplicity, we also set ‖f‖ = ‖f‖2. The integrals and the supremum are re-

stricted to the support of f and for τ a positive real number, we set ‖f‖∞,τ =

supx∈[0,τ ] |f(x)|.
We denote by x∗ = arg minx∈X f(x) the point x∗ such that f(x∗) realizes the mini-

mum of the function f over the set X , if it exists.

For k a positive integer, f (k) represents the derivative of order k of the function f ,

and we set by convention f (0) ≡ f .

For h a positive real number, fh represents the function fh(·) = f(·/h)/h.
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For two square-integrable functions f and g from R to R, we denote the convolu-

tion product of f and g by f ∗ g, where

f ∗ g(t) =

∫
f(t− x)g(x)dx =

∫
f(t)g(x− t)dt.

Finally, for two quantities α(n) and γ(n), the notations α(n) . γ(n) and α(n) ∝
γ(n) will be used to say that there exists a positive constant c such that α(n) ≤ cγ(n)

and α(n) = cγ(n) respectively.

2.2. Process assumptions. Let D be the terminal event (e.g. death) and N∗(t)

be the number of recurrent events experienced up to time t. As no recurrent event

can occur after the terminal event, the process N∗(·) has jumps of size +1 on [0, D].

Let C be the censoring time, assumed to be independent of both N∗(·) and D.

The i.i.d. observations are then given by:
Ti = Di ∧ Ci
δi = I(Di ≤ Ci)

Ni(t) = N∗i (t ∧ Ci),

for i = 1, . . . , n. The distribution functions of D, C and T = D∧C are respectively

denoted by:

(1) F (t) = P[D ≤ t], G(t) = P[C ≤ t] and H(t) = P[T ≤ t], t ≥ 0.

The mean function of N∗ is defined as E[N∗(t)] = µ(t) for all t ≥ 0. We assume

that N∗ has an intensity, in the sense that there exists a non-negative function λ

such that, for all t ≥ 0:

E[N∗(t)] = µ(t) =

∫ t

0

λ(s)ds.

Note that this definition is different from the conventional definition of the intensity

of a recurrent event process. In our context λ(t) refers to the occurrence probability

of recurrent events at time t unconditionally to the history of the recurrent events

process. In addition, λ(t) is defined unconditionally to t ≤ D or t ≤ C contrary

to the usual model assumptions in a recurrent events framework. This function is

defined in Cook and Lawless [7] and is referred to as the rate function, and denoted

by ρ. It is also introduced in Dauxois and Sencey [8] as the frequency function.

On the opposite, the definition of the rate function in Chiang et al. [6] is different

from ours. But notice that, multiplying their rate function by 1−G(·−), gives the

intensity function as defined in our context.
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Our aim here is to infer on this intensity function λ. To this purpose we first

introduce some assumptions.

Assumption 1. Assume that:

(i) C is independent of D and of the process (N(t))t≥0,

(ii) P
[
dN∗(C) 6= 0

]
= 0,

(iii) P[D = C] = 0.

Assumption (i) is common in the context of recurrent events when censored data

are present (see e.g. [8],[9]). Assumptions (ii) and (iii) are technical assumptions

used to prevent us from ties between death, censoring and the apparition of recurrent

event. Notice that in practical situations, if such ties exist, they can be dealt with

by assigning to censored events values just slightly larger than their actual values.

The next assumption is introduced to circumvent problems arising in the tails of

the distributions of C and N .

Assumption 2. Assume that:

(i) for F , G, H defined by (1), there exist three positive constants τ, cF and cG
such that τ < inf{t : H(t) = 1} and, for all t ∈ [0, τ ],

1−G(t) ≥ cG, 1− F (t) ≥ cF .

(ii) there exists cτ > 0, such that N(t) ≤ cτ almost surely for every t ∈ [0, τ ].

(iii) ‖λ‖∞,τ := supt∈[0,τ ] λ(t) <∞.

The first assumption is common in the context of estimation with censored ob-

servations (cf. [1]) while the second can be found e.g. in [8]. The last one is an

additional condition only required for the pointwise setting.

2.3. Kernel and functional assumptions. In this paper, our goal is to perform

non-parametric estimation of the function λ using a kernel-type estimator. Very

classical regularity conditions are required for the intensity function and the kernel

K. We first impose λ to belong to a Hölder space (see [20]).

Assumption 3. Let β > 0 and L > 0. Assume λ(l) exists for l = bβc and

|λ(l)(t+ z)− λ(l)(t)| ≤ L|z|β−l, ∀z ∈ [−h, h], t ∈ [h, τ − h].

We also need to impose some conditions on the kernel K and the bandwidth h.

Note that the following set of assumptions are fulfilled by many standard kernel

functions.
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Assumption 4. Assume that

(i) K has a compact support [−1, 1],
∫ 1

−1K(u)du = 1 and ‖K‖2 =
∫ 1

−1K
2(u)du <

∞,

(ii) ‖K‖∞ = supu∈[−1,1] |K(u)| <∞,

(iii) K is a l = bβc order kernel, in the sense that∫ 1

−1
ujK(u)du = 0, for j = 1, . . . , l,

∫ 1

−1
uβK(u)du <∞,

(iv) nh ≥ 1 and 0 < h < 1.

Considering these four assumptions, it is now possible to perform estimation of

λ. Our kernel estimator is introduced in the next section.

3. Study of the MSE and the MISE of λ̂h

3.1. Kernel estimator. One of the difficulties for estimating the intensity function

comes from the fact that the process N∗(t) is not directly observable. Therefore, our

estimation procedure is based on the next equality which provides a new expression

of λ relying on the process N instead of N∗(t).

Under Assumption 1 and since N∗ does not jump after D, we have:

(2) E[dN(t)] = E[dN∗(t ∧ C)] = E[dN∗(t)E[I(t ≤ C)|N∗]] = λ(t)
(
1−G(t−)

)
dt.

The distribution function G is estimated by Ĝ, the Lo et al. [16] modified Kaplan-

Meier estimator,

Ĝ(t) =


1−

∏
i:T(i)≤t

(
1− 1

n− i+ 2

)1−δ(i)
if t ≤ T(n),

Ĝ(T(n)), if t > T(n),

where T(i) denotes the ith order statistic associated to the sample T1, . . . , Tn (that is

T(1) ≤ . . . ≤ T(n) and the (δ(i))’s are the δi’s associated to the new indexes). Notice

that, from this definition, for all t ≥ 0:

(3) 1− Ĝ(t) ≥ (n+ 1)−1.

Then, we can propose the following kernel estimator to estimate λ:

(4) λ̂h(t) =
1

nh

n∑
i=1

∫
K

(
t− s
h

)
dNi(s)

1− Ĝ(s−)
,

where K is a kernel function and h a bandwidth, satisfying Assumption 4. It is

important to notice that the kernel is bounded with compact support on [−1, 1]
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and consequently the integral in (4) will vanish outside the interval [t − h, t + h].

Therefore, given a bandwidth h, we will in the following only discuss estimation of

λ for t such that t± h ∈ [0, τ ].

Let us also introduce the following pseudo-estimator:

λ̃h(t) =
1

nh

n∑
i=1

∫
K

(
t− s
h

)
dNi(s)

1−G(s−)
,

which is the kernel estimator of λ in the case where G is known. In the following,

the study of the quadratic error of λ̂h − λ is divided into two steps. We first study

the error of λ̃h − λ, then the one of λ̃h − λ̂h. The final results, a bound for the

Mean Squared Error (MSE) at a fixed point and the Mean Integrated Squared Error

(MISE) of λ̂h − λ are given in Theorem 1.

3.2. Study of the pseudo estimator λ̃h. We obtain with rather classical tools

the following results for the risk of the pseudo-estimator. We state successively the

pointwise error and the integrated error as the sum of a bias term and a variance

term.

Proposition 1. Under Assumptions 1 to 4 we have:

(a) for all t ∈ [h, τ − h]:

E
[(
λ̃h(t)− λ(t)

)2] ≤ c21h
2β +

cτ‖λ‖∞,τ
nhcG

‖K‖2,

where

c1 =
L

l!

∫ 1

−1
|u|βK(u)du.

(b)

∫ τ−h

h

E
[(
λ̃h(t)− λ(t)

)2]
dt ≤ τc21h

2β +
cτΛ(τ)

nh
‖K‖2, where

Λ(τ) =

∫ τ

0

λ(s)ds

1−G(s−)
.

Proof. For the bias terms, observe that, from Equation (2)

E[λ̃h(t)] =
1

h

∫
K

(
t− s
h

)
λ(s)ds

and using a change of variables, this leads to(
E[λ̃h(t)]− λ(t)

)2 ≤ (∫ 1

−1
K(u)

(
λ(t+ uh)− λ(t)

)
du

)2

.
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Now write λ(t + uh) = λ(t) + λ′(t)uh + · · · + (uh)l

l!
λ(l)(t + ξuh), for 0 ≤ ξ ≤ 1, and

use Assumptions 3 and 4 to obtain the required square bias bounds c21h
2β in (a) and

τc1h
2β in (b).

Let us denote by V[X] the variance of X. For the variance terms, recalling that

Kh(·) = (1/h)K(·/h), we write

V[λ̃h(t)] =
1

n
V
[∫

Kh (t− s)
1−G(s−)

dN(s)

]
≤ 1

n
E

[(∫
Kh (t− s)
1−G(s−)

dN(s)

)2
]
.

Then apply Lemma 9 (see Section 8), under Assumption 2 (ii):

V[λ̃h(t)] ≤
cτ
n
E
[∫

K2
h (t− s)

(1−G(s−))2
dN(s)

]
≤ cτ

n

∫
K2
h (t− s)

1−G(s−)
λ(s)ds.

From this point, Assumption 2 (i) and (iii) and the equality
∫
K2
h(t − s)ds =

h−1‖K‖2 give the pointwise variance bound of (a) while a change of variables gives

the integrated variance term of (b).

Gathering the bias and the variance bounds gives the MSE and the MISE stated

in (a) and (b) and thus the result of Proposition 1 follows.

�

3.3. Study of the estimator λ̂h. The most difficult part concerns the study of

the difference between λ̂h and λ̃h. We give our final conclusion here and postpone

the proof until Section 7.

Lemma 1. Under Assumptions 1 to 4, for all t ∈ [h, τ − h], we have

E
[(
λ̂h(t)− λ̃h(t)

)2] ≤ c
log(n)

n
,

and

E
[∫ τ−h

h

(
λ̂h(t)− λ̃h(t)

)2
dt

]
≤ c′

log(n)

n
,

where c is a constant depending on ‖K‖∞, ‖λ‖∞,τ , cτ and c′ is a constant depending

on Λ(τ), ‖K‖ and cτ .

Now, gathering the results of Proposition 1 (a) − (b) and Lemma 1 gives the

following global bounds for the estimator.
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Theorem 1. Under Assumptions 1 to 4 we have:

(a) for all t ∈ [h, τ − h],

E
[(
λ̂h(t)− λ(t)

)2] ≤ 2c21h
2β + 2

cτ‖λ‖∞,τ
nhcG

‖K‖2 + c
log(n)

n
,

(b) ∫ τ−h

h

E
[(
λ̂h(t)− λ(t)

)2]
dt ≤ 2τc21h

2β + 2
cτΛ(τ)

nh
‖K‖2 + c′

log(n)

n
,

where c1 is the constant defined in Proposition 1 and c and c′ are the two constants

introduced in Lemma 1.

Note that the inequalities stated in Theorem 1 are nonasymptotic. In both cases,

they provide a bound which contains firstly a squared-bias term of order h2β, sec-

ondly a variance term of order 1/(nh) and lastly a residual term which is negligible.

If one wants to obtain an asymptotic convergence rate from these results, one has to

optimize with respect to h to obtain the smallest possible order of the risk bounds.

Classically, it appears that we should choose h ∝ n−1/(2β+1) and obtain a rate pro-

portional to n−2β/(2β+1). Nevertheless, to reach such a rate, we would need to know

β, the regularity index of the unknown function: however, in practical situation this

knowledge is usually unavailable. In the following, we provide a data-driven way of

selecting the bandwidth which allows to reach almost or exactly the optimal rate

without requiring the knowledge of β.

4. Adaptive estimation of λ

4.1. Pointwise bandwidth selection. In this part we want to select automati-

cally a relevant bandwidth for our estimator using Goldenshluger and Lepski’s [12]

method. Let t = t0 be the point of interest and define for any t:

λ̂h,h′(t) = Kh′ ∗ λ̂h(t),

where we recall that f ∗ g denotes the convolution product of the functions f and

g. Note that, from the definition of λ̂h,h′ ,

λ̂h,h′(t) =
1

n

n∑
i=1

∫
Kh′ ∗Kh(t− s)

dNi(s)

1− Ĝ(s−)
=

1

n

n∑
i=1

∫
Kh ∗Kh′(t− s)

dNi(s)

1− Ĝ(s−)
,

so that λ̂h,h′(t) = Kh ∗ λ̂h′(t) = λ̂h′,h(t). Then, for some κ0 > 0, define

(5) V0(h) = κ0
cτ‖λ‖∞,τ‖K‖2 log(n)

nhcG
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and consider, for Hn a discrete set of bandwidths specified in the following,

(6) A0(h, t0) = sup
h′∈Hn

{
(λ̂h′ − λ̂h,h′)2(t0)− V0(h′)

}
+
.

Lastly, we define our adaptive estimator in the following way:

(7) ĥ(t0) = argmin
h∈Hn

(A0(h, t0) + V0(h)) and λ̌(t0) = λ̂ĥ(t0)(t0).

Theorem 2. Under Assumptions 1 to 4, and if Hn is a finite discrete set of band-

widths such that Card(Hn) ≤ n,

(8) ∀h ∈ Hn, nh ≥ κ1 log(n), for some κ1 ≥ 0,

and

(9)
∑

k: hk∈Hn

1

nhk
. loga(n), for some a ≥ 0,

then there exists a constant κ0 such that λ̌ defined by (5), (6) and (7) satisfies:

(10) ∀h ∈ Hn, E
[(
λ̌(t0)− λ(t0)

)2] ≤ c(c21h
2β + V0(h)) + c′

log(1+a)(n)

n
,

where c is a real (absolute) number and c′ a real constant depending on cτ , ‖λ‖∞,τ
and cG.

Remark 1. Note that V0(h) contains several types of terms:

• κ0, a real number. The proof below shows that κ0 taken equal to 80 would

give the theoretical result but a much smaller value works, in practice (see

Section 5).

• log(n)/(nh) which gives the asymptotic order of the term and is known.

• ‖K‖, a known constant, as the kernel is user chosen.

• cτ and ‖λ‖∞,τ which are unknown quantities that can respectively be esti-

mated by

(11) ĉτ = max
1≤i≤n

Ni(τ), ‖̂λ‖∞,τ = sup
x∈[hn,τ−hn]

λ̂hn(x).

Here hn is an arbitrary bandwidth (it can be taken equal to n−1/5 for instance).

Note that if we replace in V0(h) the unknown terms by their estimates given in (11),

we get an estimate V̂0(h). Inserting this in theoretical part would imply several

additional steps to the study of the estimate. For the sake of simplicity, we do not

provide this part of the study.
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The bound (10) holds for all h ∈ Hn and therefore reaches automatically the rate

(n/ log(n))−2β/(2β+1) provided that an optimal value for h of order (n/ log(n))−1/(2β+1)

belongs to Hn. We can note that a logarithmic loss occurs here with respect to the

optimal non-adaptive rate. This is also what happens for classical density estima-

tion and we can thus conjecture that the procedure is nevertheless adaptive optimal.

Example of Hn. Considering constraints (8) and (9) on Hn, we can propose

Hn =

{
k

n
: k = blog2(n)c, blog2(n)c+ 1, . . . , n

}
so that Card(Hn) ≤ n and ∀k = blog2(n)c, . . . , n, we have hk ∈ [n−1, 1] and hk ≥
log(n)/n which gives (8). Moreover, k0 = bn2β/(2β+1)(log(n))1/(2β+1)c is guaranteed

to be such that k0/n ∝ (n/ log(n))−1/(2β+1) belongs to Hn. Besides,
∑

k 1/(nhk) =

O(log(n)) and condition (9) holds with a = 1.

4.2. Global bandwidth selection. In the global risk setting, we set, for some

κ > 0,

(12) V (h) = κ
cτΛ(τ)‖K‖2

nh

and we consider for Hn a discrete set of bandwidths specified in the following,

(13) A(h) = sup
h′∈Hn

{
‖λ̂h′ − λ̂h,h′‖2 − V (h′)

}
+
.

Finally we define:

(14) ĥ = argmin
h∈Hn

(A(h) + V (h)) and λ∗ = λ̂ĥ.

Theorem 3. Under Assumptions 1 to 4, and if Hn is a finite discrete set of band-

widths such that Card(Hn) ≤ n, condition (9) is fulfilled and

(15)
∑

k : hk∈Hn

exp(−b/hk) < +∞, ∀b > 0,

then there exists a constant κ such that λ∗ defined by (12), (13) and (14) satisfies:

(16) ∀h ∈ Hn,

∫ τ−1

1

E
[(
λ∗(t)− λ(t)

)2]
dt ≤ c(τc21h

2β + V (h)) + c′
log1+a(n)

n
,

where c is a numerical constant and c′ a constant depending on cτ , Λ(τ) and cG.
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Remark 2. Note that all the points in Remark 1 can be transposed to V (h). The

additional term Λ(τ) is also unknown and can be estimated by:

Λ̂(τ) =
1

n

n∑
i=1

∫ τ

0

dNi(s)

(1− Ĝ(s−))2
.

It is worth emphasizing here that, if Hn is large enough to contain bandwidths

of order hopt ∝ n−1/(2β+1), then the adaptive estimator automatically reaches the

optimal rate n−2β/(2β+1), without requiring the knowledge of β. Compared to the

pointwise setting, no logarithmic loss occurs here.

Let us now give two examples of Hn fulfilling Assumption 4 (iv), conditions (9) and

(15).

Example 1. Take

Hn =

{
hk =

1

k
: k = 1, 2, . . . , b

√
nc
}
.

Then Card(Hn) ≤
√
n ≤ n and ∀k = 1, . . . , b

√
nc, we have hk ∈ [n−1, 1]. Moreover

∑
k : hk∈Hn

(1/(nhk)) =
1

n

b
√
nc∑

k=1

k = O(1)

which ensures condition (9). Lastly

∑
k : hk∈Hn

exp(−b/hk) =

b
√
nc∑

k=1

e−bk = O(1)

and (15) is ensured.

Let us emphasize that since hopt ∝ n−1/(2β+1), the condition n−1/2 ≤ n−1/(2β+1) ≤ 1

is required, that is β ≥ 1/2. This means that there is a minimal regularity condition

to impose on the function of interest for (16) to hold.

Example 2. Take

Hn =

{
hk =

1

2k
, k = 1, 2, . . . , blog(n)/ log(2)c

}
.

Then Card(Hn) ≤ log(n)/ log(2) ≤ n and ∀k = 1, 2, . . . , blog(n)/ log(2)c, we have

hk ∈ [n−1, 1]. Moreover∑
k : hk∈Hn

(1/(nhk)) =
1

n

blog(n)/ log(2)c∑
k=1

2k = O(1),
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Figure 1. Scenario 1 with β = 1 and n = 500, r̄e = 1.02, pc = 0%

(top), n = 1000, r̄e = 1.04, pc = 0% (middle), n = 5000, r̄e = 0.97,

pc = 0% (bottom)

which ensures condition (9). Lastly

∑
k : hk∈Hn

exp(−b/hk) =

blog(n)/ log(2)c∑
k=1

e−b2
k

= O(1)

and (15) is verified.

Here, no minimum regularity condition of the function to estimate is needed.

5. Simulations

We illustrate the behavior of estimator λ̌, constructed with the pointwise band-

width selection of Section 4.1 and conduct a Monte Carlo study to compare our

adaptive procedure for the selection of the bandwidth to a boostrap-based selection.



14 O. BOUAZIZ, F. COMTE, A. GUILLOUX

0 0.5 1 1.5
0

0.5

1

1.5

2

0 0.5 1 1.5
0

0.5

1

0 0.5 1 1.5
0

0.5

1

1.5

2

0 0.5 1 1.5
0

0.5

1

0 0.5 1 1.5
0

0.5

1

1.5

2

0 0.5 1 1.5
0

0.5

1

Figure 2. Scenario 2 with β = 0.05 and n = 500, r̄e = 0.92, pc = 0%

(top), n = 1000, r̄e = 0.89, pc = 0% (middle), n = 5000, r̄e = 0.91,

pc = 0% (bottom)

5.1. Description of the simulation scheme. Recurrent events data are simu-

lated as follows. For individuals i = 1, . . . , n, the terminal event Di is simulated

according to the distribution F , the censoring time Ci according to G. Condition-

ally on Di, the number n(i) of recurrent events experienced by individual i on time

interval [0, Di] are simulated according to a Poisson distribution P(
∫ Di
0
ϕ(u)du).

Finally the recurrent times for individual i are simulated as n(i) i.i.d. random vari-

ables with common probability density function ϕ/
∫ D
0
ϕ(u)du. The intensity of the

process N∗ is then given by:

λ(t) = ϕ(t)(1− F (t)).

We consider two scenarios for the simulated data:
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1. ϕ(t) = t and 1− F (t) = exp(−βt).
2. ϕ(t) = (3/2)(1− |t− 1|)2 on [0, 2] and 1− F (t) = exp(−βt) on [0, 2].

The estimators of Section 4.1 are constructed with Epanechnikov kernels:

KE,2(t) = (3/4)(1− t2), if |t| ≤ 1.

We use a data-driven criterion for the selection of the bandwidth, by replacing V0(h)

in Definition (5) by:

V̂0(h) = κ0
ĉτ‖λ̂‖∞,τ‖K‖2 log(n)

nhĉG
,

with

ĉτ = max
i=1,...,n

( sup
t∈[0,Tmax]

N i(t)) + 2

‖λ̂‖∞,τ = sup
t∈[0,Tmax]

|λ̂0.5(t)| and

ĉG = 1− Ĝ(Emax−) and

κ0 = 10−2,

where Emax is the greatest observed recurrent event. We set the universal value of

κ0 at 10−2 after an extensive simulation study: we compare the MSE for several

candidate values in the range 10−5 − 102 and in different scenarios.

The finite set of bandwidths (Hn) considered in the algorithm is given by:

Hn = {log2(n)/n+ 1/2k, k = 0, 1, . . . , blog(n)/ log(2)c}.

5.2. Illustration of the behavior of the adaptive estimator. In figures 1-

3, the intensity functions are estimated on a 20-point grid, regularly spaced on

[0, Emax].The number of observations n, the mean number of recurrent r̄e and the

level of censoring pc are reported in the captions. In each figure, the left plots

show the true intensity functions in red, the estimators in blue, and the set of all

the estimators proposed to the selection algorithm is dashed black. The right plots

show the value of the selected windows for all points on the grid.

In Figures 1 and 2, we investigate the behavior of our estimators, when the sample

size n grows. In scenario 1, where the intensity λ to recover is smooth, as in scenario

2, where λ has a singularity, the estimator behaves as expected: it improves with

the sample size.

In Figure 3, we illustrate the behavior of our estimator when the censoring level

grows. In this case, the censoring time has an exponential distribution, with 1 −
G(t) = exp(−γt), where the parameter γ takes the values γ = 1/30 (top), γ = 1/3
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(middle) and γ = 1 (bottom). The resulting levels of censoring and mean numbers

of recurrent events are indicated in the caption. Note that, as the level of the

censoring grows, the numbers of observed recurrent events vanishes (from r̄e = 1.12,

when pc = 4%, to r̄e = 0.25, when pc = 50%) as does the time intervals, on which

they are observed (from [0, 9], when pc = 4%, to [0, 2.5], when pc = 50%).

From a general point of view, we can see in Figures 1, 2 and 3 that the algorithm

makes very different bandwidth choices, depending on the point of time. Therefore,

the pointwise strategy is very useful. In particular, we can see in Figures 1 and 2 that

the minimal bandwidth choice occurs at time 1 which in both cases is the location

of the maximum; moreover, the selected bandwidth is smaller when the function is

less smooth (look at the value of ĥ for the peaks of the functions). Lastly, Figure 3

shows that the pointwise strategy is relevant: indeed, it is obviously a good strategy

to change the bandwidth in function of the time since none of the proposed curves

would globally give a better estimate.

5.3. Monte Carlo study. In this section, we aim at comparing our adaptive strat-

egy for the selection of the bandwidth to a bootstrap-based strategy described below,

in the spirit of Chiang et al. [6]. Note that no theoretical results are available for

the bootstrap method in our present setting. In addition Chiang et al. [6] in their

context presents only asymptotic results and for fixed bandwidth.

Towards that end, we conduct a Monte Carlo study (with M = 100 replications)

and calculate the following squared error on the simulated data of replication m (for

m = 1, . . . ,M):

SE(λ̂m) =
1

K − 2bKρc

K−bKρc∑
k=1+bKρc

(
λ̂mη(tk)(tk)− λ(tk)

)2
,

where λ̂mη(tk) is the estimator λ̂ calculated on the mth dataset in the Monte Carlo

experiment, at point tk (on a K point grid) and for the selected pointwise bandwidth

η(tk). In the previous equation, 0 ≤ ρ < 1 represents the proportion of the smallest

and largest observations withdrawn in the computation of SE to avoid the boundary

effects.

We consider

• the adaptive bandwidth selection procedure described in the previous sub-

section and will denote by SE(λ̂mAdapt) its squared error: in this case λ̂mη(tk) =

λ̂m
ĥ(tk)

, where ĥ(tk) is defined in Equation 7.



NONPARAMETRIC ESTIMATION FOR RECURRENT EVENTS 17

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3. Scenario 1 with β = 1 and n = 1000, r̄e = 1.12, pc = 4%

(top), n = 1000, r̄e = 0.55, pc = 25% (middle), n = 1000, r̄e = 0.25,

pc = 50% (bottom)

• a bootstrap-based procedure and will denote by SE(λ̂mBoot) its squared error:

in this case λ̂mη(tk) = λ̂m
ĥm,∗(tk)

, where ĥm,∗(tk) is defined by:

ĥm,∗(tk) = argmin
h∈Hn

M̂SE
∗
(λ̂mh (tk))
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×103
n = 200 n = 500 n = 1000

mean median mean median mean median

Adaptive 1.72 1.44 0.71 0.50 0.31 0.21

Bootstrap 1.76 1.57 0.73 0.55 0.37 0.28

Table 1. Scenario 1 with 0% of censoring and β = 1

×103
n = 200 n = 500 n = 1000

mean median mean median mean median

Adaptive 4.25 3.24 2.05 1.56 1.26 1.10

Bootstrap 4.30 3.24 1.95 1.56 0.95 0.73

Table 2. Scenario 1 with ∼ 33% of censoring and β = 1

with

M̂SE
∗
(λ̂mh (tk)) = V̂ ar

∗
(λ̂mh (tk)) +

(
B̂ias

∗
(λ̂mh (tk))

)2
.

The term V̂ ar
∗
(λ̂mh (tk)) is the estimated variance calculated on B samples

bootstrapped from the mth dataset in the Monte Carlo experiment and

B̂ias
∗
(λ̂mh (t)) =

1

nh

n∑
i=1

∫ {
KE,2

(
t− s
h

)
−KE,4

(
t− s
h

)} dNm
i (s)

1− Ĝm(s−)

where Nm
i and Ĝm are calculated on the mth Monte Carlo experiment and

KE,4 = (15/8) × (1 − (7/2)u2)KE,2(u), see Chiang et al. [6] and Schucany

[19] for the estimation of the bias and Hansen [13] for the definition of KE,4.

In tables 1 to 3, we display the mean and the median of SE(λ̂mAdapt) and SE(λ̂mBoot)

obtained on M = 100 Monte Carlo experiments. The number of bootstrap sample

B = 100 and τ = 0.1. The variances and interquartile ranges are roughly the same

for both methods. Note that the grid of bandwidths proposed in the bootstrap

algorithm is borrowed from our theoretical proposal.

We can see from tables 1-3 that the perfomances of the two bandwidth selection

methods are roughly similar: our proposal is slightly better in table 1 while the

bootstrap method performs slightly better in table 3. This is certainly partly due to

the choice of the set of bandwidths Hn which sets the bootstrap under control. Let

also emphasize that the number of kernel estimators that are computed are |Hn|2 for
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×102
n = 200 n = 500 n = 1000

mean median mean median mean median

Adaptive 2.25 2.28 1.55 1.56 0.03 0.03

Bootstrap 1.69 1.60 0.99 0.95 0.02 0.03

Table 3. Scenario 2 with 0% of censoring and β = 0.05

our method versus B|Hn| for the bootstrap method, where B = 100 and |Hn| ' 10

for n = 1000, which makes our method approximately 10 times faster.

6. Concluding remarks

In this work, we not only provide a kernel estimator for the intensity function of

a recurrent event process, but we also prove oracle type inequalities for the risk of

an adaptive estimator with data-driven selected bandwidth. We have studied both

cases of pointwise risk for pointwise chosen bandwidth and integrated global risk

with a globally selected bandwidth. Our bandwidth selection proposal is original

and slightly different from standard cross-validation methods. This is because it is

based on recent ideas developed by Goldenshluger and Lepski [12]: in this sense,

our results are new and the way of proving the results is of interest. We also assess

the practical feasibility and the good performances of our proposal through a short

simulation study: we found it more challenging to evaluate the pointwise selection

and we illustrated the different bandwidths choices performed by the algorithm.

7. Proofs

7.1. Proof of Lemma 1. The proof relies on four additional lemmas which are

presented below. First, write:

λ̂h(t)− λ̃h(t) =
1

nh

n∑
i=1

∫
Ĝ(s−)−G(s−)

(1− Ĝ(s−))(1−G(s−))
K

(
t− s
h

)
dNi(s).

Then introduce the sets

ΩG =
{
ω : ∀t ∈ [0, τ ], G(t)− Ĝ(t) ≥ −cG/2

}
,

Ω?
G =

{
ω : ∀t ∈ [0, τ ], |G(t)− Ĝ(t)| ≤ c0

√
n−1 log n

}
,

and

(17) Ωc0 = ΩG ∩ Ω?
G.
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Our idea is to study the difference process λ̂h − λ̃h on Ωc0 and its complementary.

The next lemma gives a useful bound of P[Ωc
c0

]. The proof is postponed to Section

8.

Lemma 2. For all p ∈ N, there exists a choice of the constant c0 = c0(p) such that,

(18) P
[
Ωc
c0(p)

]
≤ c2n

−p,

where c2 is a constant depending on p, cF and cG, and c0(p) also depends on cF .

In the following, we denote by Ωp = Ωc0(p) such that Equation (18) in Lemma 2

holds. We now start the proof of Lemma 1 by studying the difference process λ̂h−λ̃h
on the set Ωc

p.

Lemma 3. Under Assumptions 1 to 4, for all p ∈ N, t ∈ [h, τ − h], we have:

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ (n+ 1)2n2−p/2c3(‖K‖∞)2,

where

c3 = c3/2τ

√
c2

(∫ τ

0

λ(s)ds

(1−G(s−))3

)1/2

.

Consequently, choosing p ≥ 10 yields E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ c/n for a positive

constant c.

Lemma 4. Under Assumptions 1 to 4, for all p ∈ N, we have:∫ τ−h

h

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ (n+ 1)2n1−p/2c3‖K‖2.

Consequently, choosing p ≥ 8 yields
∫ τ−h
h

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ c/n for a

positive constant c.

Proof of Lemmas 3 and 4. From the facts that 1 − Ĝ(t) ≥ (n + 1)−1 (see Equa-

tion (3)) and ‖Ĝ−G‖∞ < 1, we have for all t ∈ [h, τ − h]:

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ (n+ 1)2

n2
E

( n∑
i=1

∫
Kh (t− s)
1−G(s−)

dNi(s)

)2

I(Ωc
p)


≤ (n+ 1)2E

[(∫
Kh (t− s)
1−G(s−)

dN(s)

)2

I(Ωc
p)

]

≤ (n+ 1)2cτE
[∫

K2
h (t− s) I(Ωc

p)

(1−G(s−))2
dN(s)

]
,(19)
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where the last inequality is obtained from Lemma 9. Now, for the proof of Lemma

3, use consecutively the Cauchy-Schwarz inequality and Lemma 9 to obtain:

E
[∫

K2
h (t− s) I(Ωc

p)

(1−G(s−))2
dN(s)

]
≤ E1/2

[(∫
K2
h (t− s)

(1−G(s−))2
dN(s)

)2
]√

P[Ωc
p]

≤ (‖K‖∞)2h−2
√
cτ E1/2

[∫ τ

0

dN(s)

(1−G(s−))4

]√
P[Ωc

p]

≤ (‖K‖∞)2h−2n−p/2
√
c2cτ

(∫ τ

0

λ(s)ds

(1−G(s−))3

)1/2

,

and conclude the proof using the fact that h−1 ≤ n. To prove Lemma 4 write,∫ τ−h

h

∫
K2
h (t− s)

(1−G(s−))2
dN(s)dt ≤ h−1‖K‖2

∫ τ

0

dN(s)

(1−G(s−))2
.

Then, using Cauchy-Schwarz inequality, we get from inequality (19):∫ τ−h

h

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ (n+ 1)2cτ

h
‖K‖2 E

[∫ τ

0

I(Ωc
p)dN(s)

(1−G(s−))2

]
≤ (n+ 1)2

h
cτ‖K‖2 E1/2

[(∫ τ

0

dN(s)

(1−G(s−))2

)2
]√

P
[
Ωc
p

]
≤ (n+ 1)2n−p/2

h
c3/2τ

√
c2‖K‖2

(∫ τ

0

λ(s)ds

(1−G(s−))3

)1/2

,

and again, we conclude the proof using the fact that h−1 ≤ n. �

We now study the difference process of λ̂h − λ̃h on Ωp.

Lemma 5. Under Assumptions 1 to 4, we have for all t ∈ [h, τ −h] and any p ∈ N,

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ c4 log n

n
‖λ‖∞,τ

{
(‖K‖1)2‖λ‖∞,τ +

cτ‖K‖2

cGnh

}
,

where c4 = 4c20c
−2
G and c0 = c0(p).

Consequently, for t ∈ [h, τ − h], we have

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ c log(n)

n
,

where c is a positive constant.

Lemma 6. Under Assumptions 1 to 4, we have, for any p ∈ N∫ τ−h

h

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
dt ≤ c4 log n

n
‖K‖2

{
2

∫ τ

0

λ2(t)dt+
cτΛ(τ)

nh

}
,
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where Λ(τ) is defined in Theorem 1. Consequently, we have∫ τ−h

h

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
dt ≤ c log(n)

n
,

where c is a positive constant.

Proof of Lemmas 5 and 6. First, use the facts that

• 1− Ĝ(t) = 1−G(t) +G(t)− Ĝ(t) ≥ cG/2 on ΩG,

• ‖G(t)− Ĝ(t)‖∞ ≤ c0
√
n−1 log n on Ω?

G,

to write:

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ 4c20 log n

nc2G
E

( 1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

)2
 .

Then, we have:(
E

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

])2

=

(∫
|Kh (t− s)|λ(s)ds

)2

≤ (‖K‖1‖λ‖∞,τ )2,

and

V

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

]
≤ cτ‖K‖2‖λ‖∞,τ

cGnh
,

which follows from Proposition 1. Combining these two bounds gives the final result

of Lemma 5.

The proof of Lemma 6 follows the same line. From a change of variables and the

Cauchy-Schwarz inequality we have:∫ τ−h

h

(
E

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

])2

dt =

∫ τ−h

h

(∫
|Kh (t− s)|λ(s)ds

)2

dt

≤
(∫ 1

−1
K2(u)du

)∫ τ−h

h

∫ 1

−1
λ2(t− uh)dudt

≤ 2‖K‖2
∫ τ

0

λ2(t)dt,

where the last inequality is obtained with an other change of variables. On the other

hand, from similar arguments as in the proof of Proposition 1, we have∫ τ−h

h

V

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

]
dt ≤ cτΛ(τ)

nh
‖K‖2,
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and the result follows. �

Gathering the results of Lemmas 3 to 6 imply the result of Lemma 1. �

7.2. Proof of Theorem 2. First, for all h ∈ Hn, the following sequence of inequal-

ities holds:(
λ̌(t0)− λ(t0)

)2 ≤ 3
(
λ̂ĥ(t0)(t0)− λ̂h,ĥ(t0)(t0)

)2
+ 3
(
λ̂h,ĥ(t0)(t0)− λ̂h(t0)

)2
+ 3
(
λ̂h(t0)− λ(t0)

)2
≤ 3
(
A0(h, t0) + V0(ĥ(t0))

)
+ 3
(
A0(ĥ(t0), t0) + V0(h)

)
+ 3
(
λ̂h(t0)− λ(t0)

)2
≤ 6A0(h, t0) + 6V0(h) + 3

(
λ̂h(t0)− λ(t0)

)2
.

Since V0(h), see (5), and (λ̂h(t0) − λ(t0))
2, see Theorem 1, (a), have the adequate

order (with additional log(n) for V0), we only study A0(h, t0). With obvious defini-

tion of λ̃h,h′ = Kh′ ∗ λ̃h, λh(t0) = E[λ̃h(t0)] and λh,h′(t0) = E[λ̃h,h′(t0)], A0(h, t0) can

be decomposed into five terms:

A0(h, t0) = sup
h′∈Hn

{(
λ̂h′(t0)− λ̂h,h′(t0)

)2 − V0(h′)}
+

≤ 5 sup
h′∈Hn

{(
λ̃h′(t0)− λh′(t0)

)2 − V0(h′)/10
}

+

+ 5 sup
h′∈Hn

{(
λ̃h,h′(t0)− λh,h′(t0)

)2 − V0(h′)/10
}

+

+ 5 sup
h′∈Hn

(
λ̂h′(t0)− λ̃h′(t0)

)2
+ 5 sup

h′∈Hn

(
λ̂h,h′(t0)− λ̃h,h′(t0)

)2
+ 5 sup

h′∈Hn

(
λh′(t0)− λh,h′(t0)

)2
:= 5(T0,1 + T0,2 + T0,3 + T0,4 + T0,5).

We start with the last one:

|λh′(t0)− λh,h′(t0)| = |Kh′ ∗ λ(t0)−Kh′ ∗Kh ∗ λ(t0)| = |Kh′ ∗ (λ−Kh ∗ λ)(t0)|

≤ ‖K‖1 sup
t∈[0,τ ]

|(λ−Kh ∗ λ)(t)|.

This yields to say

T0,5 ≤ ‖K‖21 ‖λ−Kh ∗ λ‖2∞,τ ≤ (‖K‖1)2c21h2β,

since λ−Kh ∗ λ corresponds to the bias term in Proposition 1.



24 O. BOUAZIZ, F. COMTE, A. GUILLOUX

Then we decompose T0,3 into two terms corresponding to I(Ωp) and I(Ωc
p) where

Ωp is defined by (17). First, from Lemma 3, we have

E
[

sup
h′∈Hn

(λ̂h′ − λ̃h′)2(t0)I(Ωc
p)

]
≤

∑
k,hk∈Hn

E
[
(λ̂hk − λ̃hk)2(t0)I(Ωc

p)
]

≤
∑

k,hk∈Hn

4c3(‖K‖∞)2n4−p/2 ≤ 4c3(‖K‖∞)2n5−p/2,

using the fact that Card(Hn) ≤ n. Consequently, this term is of order 1/n as soon

as p ≥ 12. On the other hand, the following sequence of inequalities holds:

E
[

sup
h′∈Hn

(λ̂h′ − λ̃h′)2(t0)I(Ωp)

]

≤ 4c20
c2G

log(n)

n
E

 sup
h′∈Hn

(∫
|Kh′(t0 − s)|
1−G(s−)

(
1

n

n∑
i=1

dNi(s)

))2


≤ 8c20
c2G

log(n)

n
E

 sup
h′∈Hn

(∫
|Kh′(t0 − s)|
1−G(s−)

(
1

n

n∑
i=1

dNi(s)− λ(s)(1−G(s−))ds

))2


+
8c20
c2G

log(n)

n
sup
h′∈Hn

(∫
|Kh′(t0 − s)|λ(s)ds

)2

≤ 8c20
c2G

log(n)

n

∑
k,hk∈Hn

V

[
1

n

n∑
i=1

∫
|Khk(t0 − s)|
1−G(s−)

dNi(s)

]
+

8c20‖λ‖2∞,τ
c2G

log(n)

n
‖K‖21

≤ 8c20
c3G

log(n)

n

∑
k,hk∈Hn

cτ‖λ‖∞,τ‖K‖2

nhk
+

8c
(
02‖λ‖∞,τ )2

c2G

log(n)

n
‖K‖21,

(20)

where the bound on the variance term comes from the proof of Proposition 1. There-

fore E[T0,3] . log1+a(n)/n from Condition (9) and this ends the study of T0,3.

The term T0,4 can be handled in a similar way using the relation λ̂h,h′(t0) −
λ̃h,h′(t0) = Kh′ ∗ (λ̂h − λ̃h)(t0). Indeed,

E
[

sup
h′∈Hn

(λ̂h,h′ − λ̃h,h′)2(t0)I(Ωc
p)

]
= E

[
sup
h′∈Hn

(
Kh′ ∗ (λ̂h − λ̃h)

)2
(t0)I(Ωc

p)

]
≤ (‖K‖1)2E

[
‖λ̂h − λ̃h‖2∞,τI(Ωc

p)
]

≤ 4c3(‖K‖1‖K‖∞)2n4−p/2,
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from Lemma 3 and

E
[

sup
h′∈Hn

(λ̂h,h′ − λ̃h,h′)2(t0)I(Ωp)

]
≤ 8c20

c2G

log(n)

n

∑
k,hk∈Hn

V

[
1

n

n∑
i=1

∫
|Khk ∗Kh(t0 − s)|

1−G(s−)
dNi(s)

]

+
8c20
c2G
‖λ‖∞,τ

log(n)

n
( sup
h′∈Hn

‖Kh′ ∗Kh‖1)2.

Then, using the property

(21) ‖f ∗ g‖q ≤ ‖f‖1‖g‖q for q ≥ 1,

it is easy to see that

V

[
1

n

n∑
i=1

∫
|Khk ∗Kh(t0 − s)|

1−G(s−)
dNi(s)

]
≤ cτ
ncG
‖λ‖∞,τ‖Kh ∗Khk‖2

≤ cτ
ncG
‖λ‖∞,τ (‖Kh‖1)2‖Khk‖2

≤ cτ‖λ‖∞,τ (‖K‖1)2‖K‖2

ncGhk
,

and

(‖Kh′ ∗Kh‖1)2 ≤ (‖Kh′‖1‖Kh‖1)2 = ‖K‖41.

We conclude as previously that E[T0,4] . log1+a(n)/n.

Finally, let us study the terms T0,1 and T0,2. We start by recalling the following

concentration inequality.

Lemma 7. [Bernstein inequality] Let ξ1, . . . , ξn be independent and identically dis-

tributed random variables and Sn(ξ) =
∑n

i=1 ξi. Then, for η > 0,

(22) P (|Sn(ξ)− E[Sn(ξ)]| ≥ nη) ≤ 2 max

(
exp

(
−nη

2

4w

)
, exp

(
−nη

4b

))
,

where w and b are such that |ξ1| ≤ b almost surely and V(ξ1) ≤ w.

Now, we want to apply this result to ξi =
∫
Kh(t0− s)dNi(s)/(1−G(s−)). First,

we need to establish the values of the bounds b and w. We have

|ξ1| ≤ (cτ‖K‖∞)/(cGh) := b and V(ξ1) ≤ cτ‖λ‖∞,τ‖K‖2/(cGh) := w.
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Thus, Inequality (22) can be written in the following way: for some x > 0,

P
[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)/10 + x

]
≤ 2 max

(
exp(−n(V0(h)/10 + x)/(4w)), exp(−n

√
V0(h)/10 + x/(4b))

)
≤ 2 max

(
exp(−n(V0(h)/10 + x)/(4w)), exp(−n

√
V0(h)/5/(8b)) exp(−n

√
x/2/(4b))

)
.

Then, we set κ0 ≥ 80, in order to have

nV0(h)

40w
= (κ0/40) log(n) ≥ 2 log(n).

On the other hand,

n
√
V0(h)

8b
√

5
=
‖K‖

√
cGκ0‖λ‖∞,τ

8‖K‖∞
√

5cτ

√
nh log(n) := κ2

√
nh log(n).

Then taking κ1 ≥ 4κ−22 in Condition (8) gives,

n
√
V0(h)

8b
√

5
≥ 2 log(n).

Therefore, we have

P
[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)/10 + x

]
≤ 2n−2 max

(
e−κ3nhx, e−κ4nh

√
x
)
,

where

κ3 =
cG

4cτ‖λ‖∞,τ‖K‖2
and κ4 =

cG

4cτ‖K‖∞
√

2
.

This yields

E
[{
|λ̃h(t0)− λh(t0)|2 − V0(h)/10

}
+

]
≤
∫ +∞

0

P
[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)/10 + x

]
dx

≤ 2n−2 max

(∫ +∞

0

e−κ3nhxdx,

∫ +∞

0

e−κ4nh
√
xdx

)
≤ 2n−2 max

(
1

κ3nh
,

2

κ24(nh)2

)
≤ κ5n

−2,

for some positive constant κ5. Finally,

E[T0,1] = E
[

sup
h′∈Hn

{(
λ̃h′ − λh′

)2
(t0)− V0(h′)/10

}
+

]
≤

∑
k,hk∈Hn

E
[{(

λ̃hk − λhk
)2

(t0)− V0(hk)/10
}

+

]
≤ κ5 Card(Hn)n−2,
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and since Card(Hn) ≤ n, we conclude that E[T0,1] . n−1.

The last term is T0,2 which can be treated in a similar way. Write

E[T0,2] = E
[

sup
h′∈Hn

{(
λ̃h,h′ − λh,h′

)2
(t0)− V0(h′)/10)+

}]
≤

∑
k,hk∈Hn

E
[{(

λ̃h,hk − λh,hk
)2

(t0)− V0(hk)/10
}

+

]
.

Then the sequel is the same as for the proof of T0,1 except that all h vanish because

‖Kh ∗Kh′‖∞ ≤ ‖Kh′‖∞‖K‖1.

Gathering the bounds of the five terms gives the result of Theorem 2. �

7.3. Proof of Theorem 3. Following the lines of the proof of Theorem 2, we have,

for all h ∈ Hn,

‖λ∗ − λ‖2 ≤ 3‖λ̂ĥ − λ̂h,ĥ‖
2 + 3‖λ̂h,ĥ − λ̂h‖

2 + 3‖λ̂h − λ‖2

≤ 3(A(h) + V (ĥ)) + 3(A(ĥ) + V (h)) + 3‖λ̂h − λ‖2

≤ 6A(h) + 6V (h) + 3‖λ̂h − λ‖2.

Here again, V (h) and ‖λ̂h − λ‖2 (see Theorem 1, (b)) have the adequate order

and we only need to study A(h). Recall that λ̃h,h′ = Kh′ ∗ λ̃h, λh(t) = E[λ̃h(t)],

λh,h′(t) = E[λ̃h,h′(t)] and write:

A(h) = sup
h′∈Hn

{
‖λ̂h′ − λ̂h,h′‖2 − V (h′)

}
+

≤ 5 sup
h′∈Hn

{
‖λ̃h′ − λh′‖2 − V (h′)/10

}
+

+ 5 sup
h′∈Hn

{
‖λ̃h,h′ − λh,h′‖2 − V (h′)/10

}
+

+ 5 sup
h′∈Hn

‖λ̂h′ − λ̃h′‖2 + 5 sup
h′∈Hn

‖λ̂h,h′ − λ̃h,h′‖2 + 5 sup
h′∈Hn

‖λh′ − λh,h′‖2

:= 5(T1 + T2 + T3 + T4 + T5).

We start with T5:

‖λh′ − λh,h′‖2 = ‖Kh′ ∗ (λ−Kh ∗ λ)‖2 ≤ (‖Kh′‖1)2‖λ−Kh ∗ λ‖2,

where we used the property (21) with q = 2. This yields to

T5 ≤ (‖K‖1)2 τc21h2β,

since ‖λ−Kh ∗ λ‖ corresponds to the bias term in Proposition 1.
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Now, the same kind of arguments can be applied to T4:

λ̂h,h′ − λ̃h,h′ = Kh′ ∗ (λ̂h − λ̃h),

and so,

E [T4] ≤ ‖K‖21E
[
‖λ̂h − λ̃h‖2

]
≤ c′(‖K‖1)2 log(n)/n,

where the last inequality was obtained from Lemma 1.

The term T3 can be dealt with in the same way as T0,3 in the proof of Theorem

2. First, from Lemma 4,

E
[

sup
h′∈Hn

∫
(λ̂h′ − λ̃h′)2(t)I(Ωc

p)dt

]
≤

∑
j,hj∈Hn

∫
E[(λ̂hj − λ̃hj)2(t)I(Ωc

p)]dt

≤
∑

j,hj∈Hn

4c3‖K‖2n3−p/2 ≤ 4c3‖K‖2n4−k/2,

and this term is of order 1/n as long as p ≥ 10. Then, using similar inequalities as

in (20) yields

E
[

sup
h′∈Hn

∫ τ−h

h

(λ̂h′ − λ̃h′)2(t)I(Ωp)dt

]
≤ 8c20

c2G

log(n)

n

∑
k,hk∈Hn

cτΛ(τ)‖K‖2

nhk
+

16c20
c2G

log(n)

n
‖K‖2

∫ τ

0

λ2(t)dt,

and we conclude from Equation (9) that E[T3] . loga+1(n)/n.

We finish the proof with T1 and T2. As in Theorem 2, these two terms can be

treated using a concentration inequality. First, we need to express each of them as

a centered empirical process. For T1, write

E

[{
sup
h′∈Hn

‖λ̃h′ − λh′‖2 − V (h′)/10

}
+

]
≤

∑
k,hk∈Hn

E
[{
‖λ̃hk − λhk‖2 − V (hk)/10

}
+

]
,

and recall that

(23) ‖λ̃hk − λhk‖2 = sup
f∈L2([hk,τ−hk]),‖f‖=1

〈λ̃hk − λhk , f〉2.

Now, we introduce the following centered empirical process:

νn,hk(f) = 〈λ̃hk−λhk , f〉 =
1

n

n∑
i=1

∫ τ−hk

hk

f(u)

(∫
Khk(u− s)

(
dNi(s)

1−G(s−)
− λ(s)ds

))
du.
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As f 7→ νn,hk(f) is continuous, the supremum in (23) can be taken over a countable

dense subset of {f ∈ L2([1, τ − 1]), ‖f‖ = 1}, which we denote by Bτ (1). Therefore,

E[T1] ≤
∑

k,hk∈Hn

E

[{
sup

f∈Bτ (1)
ν2n,hk(f)− V (hk)/10

}
+

]

and the expectation here can be bounded using the following concentration inequal-

ity.

Theorem 4. (Talagrand Inequality) Let ξ1, . . . , ξn be independent random values,

and let νn,ξ(f) = (1/n)
∑n

i=1{f(ξi)−E[f(ξi)]}. Then, for a countable class of func-

tions F uniformly bounded and ε > 0, we have

E
[{

sup
f∈F

ν2n,ξ(f)− 2(1 + 2ε2)H2
}

+

]
≤ 4

d

(
W

n
e−dε

2 nH2

W +
98M2

dn2ϕ2(ε)
e
− 2dϕ(ε)ε

7
√
2

nH
M

)
,

with ϕ(ε) =
√

1 + ε2 − 1, d = 1/6 and

sup
f∈F
‖f‖∞ ≤M, E

[
sup
f∈F
|νn,ξ(f)|

]
≤ H, sup

f∈F

1

n

n∑
i=1

V[f(ξi)] ≤ W.

To apply this result, we first need to compute appropriate values of the bounds

H, M , W and the constant ε. Clearly,

E

[
sup

f∈Bτ (1)
ν2n,hk(f)

]
≤ E

[
‖λ̃hk − λhk‖2

]
=

∫ τ−hk

hk

V
[
λ̃hk(t)

]
dt = V (hk)/κ

and thus we require H2 = V (hk)/κ. Then we set ε2 = 1/2 and κ = 40 in order to

have 2(1 + 2ε2)H2 = V (hk)/10.

Now to find the bound M , use the Cauchy-Schwarz inequality and the fact that

‖f‖ = 1 on Bτ (1) to write:

∣∣∣∣∫ τ−hk

hk

f(u)

∫
Khk (u− s) dN(s)

1−G(s−)
du

∣∣∣∣ =

∣∣∣∣∫ (∫ τ−hk

hk

f(u)Khk (u− s) du
)

dN(s)

1−G(s−)

∣∣∣∣
≤ ‖f‖

∫ (∫ τ−hk

hk

K2
hk

(u− s)du
)1/2

dN(s)

1−G(s−)
≤ cτ‖K‖

cG

1√
hk

:= M.
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Lastly, we need to determine the adequate bound W . Introduce the notation

K−hk(s) = Khk(−s) and write:

V
[∫ τ−hk

hk

f(u)

∫
Khk (u− s) dN(s)

1−G(s−)
du

]
≤ E

[(∫∫ τ−hk

hk

Khk(u− s)f(u)du
dN(s)

1−G(s−)

)2
]

≤ E

[(∫
K−hk ∗ f(s)

dN(s)

1−G(s−)

)2
]

≤ cτ

(∫
(K−hk ∗ f)2(s)

1−G(s−)
λ(s)ds

)

≤ cτ‖λ‖∞,τ
cG

‖K−hk ∗ f‖
2 ≤ cτ‖λ‖∞,τ

cG
(‖K−hk‖1)

2‖f‖2 =
cτ‖λ‖∞,τ (‖K‖1)2

cG
:= W,

where we used Lemma 9 and the property (21) for q = 2. Therefore, W is a constant

and we can now apply Talagrand Inequality:

E

[{
sup

f∈Bτ (1)
ν2n,hk(f)− V (hk)/10

}
+

]
≤ ϑ1

n

(
exp(−ϑ2/hk) +

1

nhk
exp(−ϑ3

√
n)

)
,

for some positive constants ϑ1, ϑ2 and ϑ3. Then, from conditions (9), (15) and the

fact that Card(Hn) ≤ n, we conclude:

E[T1] ≤
ϑ1

n

∑
k,hk∈Hn

(
exp(−ϑ2/hk) +

1

nhk
exp(−ϑ3

√
n)

)
.

1

n
.

The proof for T2 follows the same line as for T1. First,

E[T2] ≤
∑

k,hk∈Hn

E
[{
‖λ̃h,hk − λh,hk‖2 − V (hk)/10

}
+

]
and the Talagrand inequality needs to be applied to the centered process 〈λ̂h,hk −
λh,hk , f〉, where f ∈ Bτ (1). Since λ̃h,hk = Kh ∗ λ̃hk and λh,hk = Kh ∗ λhk the same

bounds H,M and W can be used, up to a constant. Indeed, using the inequalities

‖Kh ∗Khk‖2 ≤ ‖K‖1‖K‖2(hk)−1/2 and ‖Kh ∗K−hk‖1 ≤ (‖K‖2)1

it can be shown that Theorem 4 can be applied with

H2 =
V (hk)(‖K‖1)2

κ
, M =

cτ‖K‖1‖K‖
cG
√
hk

and W =
cτ‖λ‖∞,τ

cG
(‖K‖1)4.
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Finally, we obtain again E[T2] . 1/n.

Gathering the bounds of the five terms gives the result of Theorem 3.

8. Technical lemmas

In order to give a proof of Lemma 2, we first need to introduce the following result

which is a direct consequence of Theorem 1 in [4].

Lemma 8. For all k ∈ N∗, there exists a positive constant ck depending on k such

that

E
[
‖Ĝ−G‖2k∞,τ

]
≤ ck
nk
.

Proof. We use a nonasymptotic exponential bound for the Kaplan-Meier estimator

which can be formulated as follows (see Bitouzé et al., [4]): there exists a positive

constant η such that for any positive constant ε,

(24) P
[√

n‖(1− F ) (Ĝ−G)‖∞,τ > ε
]
≤ 2.5 e−2ε

2+ηε

and so

E
[
‖Ĝ−G‖2k∞,τ

]
≤ 2k

∫ +∞

0

u2k−1 P
[
‖Ĝ−G‖∞,τ > u

]
du

≤ 2k

∫ +∞

0

u2k−1 P
[
c−1F ‖(1− F ) (Ĝ−G)‖∞,τ > u

]
du

≤ 2k

∫ +∞

0

u2k−1 P
[√

n‖(1− F ) (Ĝ−G)‖∞,τ > cF
√
nu
]
du

≤ 5keη
2/8

∫ ∞
0

u2k−1 exp

{
−2c2Fn

(
u− η

4
√
ncF

)2
}
du

≤ 5eη
2/8k

2kc2kF

∫ +∞

−η/(2
√
2)

(
z +

η

2
√

2

)2k−1

e−z
2

dz n−k := ckn
−k.

�

Proof of Lemma 2. Since P[Ωc] ≤ P[Ωc
G] + P[(Ω?

G)c], we bound each term sepa-

rately. For any k > 0, we have

P [Ωc
G] ≤ P

[
‖G− Ĝ‖∞,τ > cG/2

]
≤ 4k

c2kG
E
[
(‖G− Ĝ‖∞,τ )2k

]
.
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Thus, Lemma 8 implies that

(25) P [Ωc
G] ≤ dkn

−k, where dk > 0.

Next, we use (24) and write:

P
[
‖Ĝ−G‖∞,τ > c0

√
n−1 log(n)

]
≤ P

[
‖(1− F )(y)Ĝ−G‖∞,τ > c0cF

√
n−1 log(n)

]
≤ 2.5 exp(−2c2F c

2
0 log(n) + ηcF c0

√
log(n)) ≤ 2.5 exp((−2cF c0 + η)c0cF log(n)).

Thus, for c0 ≥ (η +
√
η2 + 8k)(4cF )−1 we have

P [Ω?c
G ] = P

[
‖G− Ĝ‖∞,τ > c0

√
n−1 log n

]
≤ 2.5n−k.

This result and Equation (25) imply P[Ωc] ≤ (dk+2.5)n−k. �

We conclude this section with a very useful inequality concerning integrals with

respect to the counting process N .

Lemma 9. (Cauchy-Schwarz) For every bounded function h on [0, τ ], we have

N(τ)

∫ τ2

τ1

h2(s)dN(s) ≥
(∫ τ2

τ1

h(s)dN(s)

)2

,

where 0 ≤ τ1 ≤ τ2 ≤ τ .

Proof. We have

0 ≤
∫ τ2

τ1

(
h(s)−

∫ τ2

τ1

h(s)dN(s)

N(τ)

)2
dN(s)

N(τ)

0 ≤ 1

N(τ)

∫ τ2

τ1

h2(s)dN(s)− 2

(∫ τ2

τ1

h(s)
dN(s)

N(τ)

)2

+

(∫ τ2

τ1

h(s)
dN(s)

N(τ)

)2 ∫ τ2

τ1

dN(s)

N(τ)
.

Then, notice that
∫ τ2
τ1
dN(s) ≤ N(τ) to obtain the desired result. �
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